
Putting Home Data Management

into Perspective
BRANDON WATTS SALMON

December 2009

CMU–PDL–09–113

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis committee

Prof. Gregory R. Ganger, Chair (Carnegie Mellon University)
Prof. Lorrie Faith Cranor (Carnegie Mellon University)
Prof. Anind K. Dey (Carnegie Mellon University)
Prof. Mahadev Satyanarayanan (Carnegie Mellon University)
Dr. Steven W. Schlosser (Avere Systems)

c© 2009 Brandon Salmon



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
DEC 2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
Putting Home Data Management into Perspective 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Carnegie Mellon University,Dept. of Electrical and Computer 
Engineering,Pittsburgh,PA,15213 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 



14. ABSTRACT 
Distributed storage is coming home. An increasing number of home and personal electronic devices create,
use, and display digitized forms of music, images, videos, as well as more conventional files (e.g., financial
records and contact lists). In-home networks enable these devices to communicate, and a variety of
device-specific and datatype-specific tools are emerging. The transition to digital homes gives exciting new
capabilities to users, but it also makes them responsible for administration tasks usually handled by
dedicated professionals in other settings. It is unclear that traditional data management practices will work
for ormal people" reluctant to put time into administration. This dissertation presents a number of studies
of the way home users deal with their storage. One intriguing finding of these studies is that home users
rarely organize and access their data via traditional folder-based naming - usually, they do so based on
data attributes. Computing researchers have long talked about attribute-based data navigation, while
continuing to use folder-based approaches. However, users of home and personal storage live it. Popular
interfaces (e.g., iTunes, iPhoto, and even drop-down lists of recently-opened Word documents) allow users
to navigate file collections via attributes like publisher-provided metadata, extracted keywords, and
date/time. In contrast, the abstractions provided by filesystems and associated tools for managing files have
remained tightly tied to namespaces built on folders. To correct the disconnect between semantic data
access and folder-based replica management, this dissertation presents a new primitive that I call a view",
as a replacement for the traditional volume abstraction. A view is a compact description of a set of files,
expressed much like a search query, and a device on which that data should be stored. For example, one
view might be all files with type=music and artist=Beatles stored on Liz’s iPod" and another all files with
owner=Liz stored on Liz’s laptop". Each device participating in a view-based filesystem maintains and
publishes one or more views to describe the files that it stores. A view-based filesystem ensures that any file
that matches a view will eventually be stored on the device named in the view. Since views describe sets of
les using the same attribute-based style as users’ other tools, view-based management replica management
should be easier than folder-based file management. In this dissertation I present the design of Perspective,
a view-based filesystem, and Insight, a set of view-based management tools. User studies, deployments and
benchmarks using these prototypes show that view-based management simplifies some important tasks for
non-technical users and can be supported efficiently by a distributed filesystem. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

208 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



ii · Putting Home Data Management into Perspective



· iii

For Mary. I love you.



iv · Putting Home Data Management into Perspective



Abstract

Distributed storage is coming home. An increasing number of home and
personal electronic devices create, use, and display digitized forms of music,
images, videos, as well as more conventional files (e.g., financial records and
contact lists). In-home networks enable these devices to communicate, and
a variety of device-specific and datatype-specific tools are emerging. The
transition to digital homes gives exciting new capabilities to users, but it
also makes them responsible for administration tasks usually handled by
dedicated professionals in other settings. It is unclear that traditional data
management practices will work for “normal people” reluctant to put time
into administration.

This dissertation presents a number of studies of the way home users deal
with their storage. One intriguing finding of these studies is that home users
rarely organize and access their data via traditional folder-based naming—
usually, they do so based on data attributes. Computing researchers have
long talked about attribute-based data navigation, while continuing to use
folder-based approaches. However, users of home and personal storage live
it. Popular interfaces (e.g., iTunes, iPhoto, and even drop-down lists of
recently-opened Word documents) allow users to navigate file collections
via attributes like publisher-provided metadata, extracted keywords, and
date/time. In contrast, the abstractions provided by filesystems and associ-
ated tools for managing files have remained tightly tied to namespaces built
on folders.

To correct the disconnect between semantic data access and folder-based
replica management, this dissertation presents a new primitive that I call a

v



vi · Putting Home Data Management into Perspective

“view”, as a replacement for the traditional volume abstraction. A view is a
compact description of a set of files, expressed much like a search query, and
a device on which that data should be stored. For example, one view might
be “all files with type=music and artist=Beatles stored on Liz’s iPod” and
another “all files with owner=Liz stored on Liz’s laptop”. Each device partic-
ipating in a view-based filesystem maintains and publishes one or more views
to describe the files that it stores. A view-based filesystem ensures that any
file that matches a view will eventually be stored on the device named in the
view. Since views describe sets of files using the same attribute-based style
as users’ other tools, view-based management replica management should
be easier than folder-based file management.

In this dissertation I present the design of Perspective, a view-based
filesystem, and Insight, a set of view-based management tools. User studies,
deployments and benchmarks using these prototypes show that view-based
management simplifies some important tasks for non-technical users and can
be supported efficiently by a distributed filesystem.



Acknowlegements

I would especially like to thank Greg, my advisor, for believing in me. He
allowed me to drive into an area which was new, not only to our group, but
also to the field of systems researchers. It took a lot of faith and patience
on his part to allow me the time and flexibility to do so. I cannot thank my
parents, Linton and Lisa Salmon, enough. They believed in me when I did
not believe in myself.

I would also thank all the members of the Perspective development team:
Lujo Bauer, Hardik Doshi, Jared Goerner, Nitin Gupta, Rohit Harchandani,
Christina Johns, Michelle Mazurek, Prerak Mehta, Abdur Pathan, Steve
Schlosser, Zoheb Shivani and Eric Toan. It has been a pleasure working
with you guys, and I look forward to great things from you in the future.

As a system person moving into the world of usability studies, I have
benefitted greatly from the tutilage of a variety of usability experts. I would
especially like to thank Jay Hasbrouck and Jay Melican, who worked with me
at Intel and beyond, Rob Reeder and Kami Vaniea, who helped me through
the details of my first lab study, and my faculty advisors Lorrie Cranor and
Anind Dey, who have helped me craft the studies in this dissertation.

Thanks are also in order for the many participants of the user studies
in this dissertation; I’ve learned a lot from you. I’d also like to thank the
writers, actors and directors of Lost, Life, Psych, The Mentalist, and Better
off Ted for making hours of DVR development much, much more enjoyable.

I would also like to thank the members and companies of the PDL Con-
sortium (including APC, Cisco, DataDomain, EMC, Facebook, Google, HP,
Hitachi, IBM, Intel, LSI, Microsoft, NEC, NetApp, Oracle, Seagate, Sun,

vii



viii · Putting Home Data Management into Perspective

Symantec, and VMware) for their interest, insights, feedback, and support.
This material is based on research sponsored in part by the National Sci-
ence Foundation, via grants #CNS-0326453 and #CNS-0831407, and by
the Army Research Office, under agreement number DAAD19–02–1–0389.
I have also been supported by an NSF Fellowship and an Intel Fellowship
during my studies.



Contents

Figures xv

Tables xvii

1 Introduction 1
1.1 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and related work 7
2.1 Usable system design methodology . . . . . . . . . . . . . . . 7
2.2 Home storage studies . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Contextual analysis . . . . . . . . . . . . . . . . . . . 8
2.2.2 Deployment . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Distributed filesystems . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Data placement . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Replica indices and publish/subscribe . . . . . . . . . 14

2.4 Semantic interfaces . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Attribute-based naming . . . . . . . . . . . . . . . . . 15
2.4.2 Comparing attributes and folders . . . . . . . . . . . . 16
2.4.3 Perspective’s attribute-based naming . . . . . . . . . . 19

ix



x · Putting Home Data Management into Perspective

2.4.4 Faceted metadata . . . . . . . . . . . . . . . . . . . . 20
2.4.5 Keyword search . . . . . . . . . . . . . . . . . . . . . . 20

3 Home server deployment study 23
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 System description . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Investigation methods . . . . . . . . . . . . . . . . . . 25
3.1.3 Household selection . . . . . . . . . . . . . . . . . . . 26

3.2 Instant data access . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Decentralized and dynamic . . . . . . . . . . . . . . . . . . . 32

3.3.1 Decentralized devices . . . . . . . . . . . . . . . . . . . 33
3.3.2 Decentralized administration . . . . . . . . . . . . . . 35
3.3.3 Dynamic user base . . . . . . . . . . . . . . . . . . . . 37

3.4 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Users and passwords . . . . . . . . . . . . . . . . . . . 39
3.4.2 Why is the home different? . . . . . . . . . . . . . . . 40
3.4.3 Home access control methods . . . . . . . . . . . . . . 41

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Home data contextual analysis 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Study methodology . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Decentralized and dynamic . . . . . . . . . . . . . . . . . . . 48

4.3.1 Device churn . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Dynamic naming . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Distributed administration . . . . . . . . . . . . . . . 52

4.4 Semantic naming and challenges with hierarchies . . . . . . . 53
4.4.1 Semantic applications, files-and-folders filesystems . . 53
4.4.2 Challenges with files-and-folders . . . . . . . . . . . . 54

4.5 Explicit, infrequent data placement . . . . . . . . . . . . . . . 55
4.6 Heterogeneous policy . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Money matters . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 Need to feel in control . . . . . . . . . . . . . . . . . . . . . . 59



Contents · xi

4.9 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . 60

5 View-based architecture 63
5.1 Storage for the home . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 What users want . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 Designing home storage . . . . . . . . . . . . . . . . . 65

5.2 View-based architecture . . . . . . . . . . . . . . . . . . . . . 67
5.2.1 Placing file replicas . . . . . . . . . . . . . . . . . . . . 68
5.2.2 View-based data management . . . . . . . . . . . . . . 69

6 Perspective: view-based filesystem 71
6.1 Search and naming . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 Query language and operations . . . . . . . . . . . . . 72
6.1.2 Device detection . . . . . . . . . . . . . . . . . . . . . 75
6.1.3 Routing queries . . . . . . . . . . . . . . . . . . . . . . 75
6.1.4 Caching queries . . . . . . . . . . . . . . . . . . . . . . 76
6.1.5 Frontends . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.6 Application views . . . . . . . . . . . . . . . . . . . . 79

6.2 Partial replication . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.2 Synchronization . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 Update connectivity . . . . . . . . . . . . . . . . . . . 84
6.2.4 Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.5 Capacity management . . . . . . . . . . . . . . . . . . 86
6.2.6 File deletion . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.7 Garbage collection . . . . . . . . . . . . . . . . . . . . 86

6.3 Reliability with partial replication . . . . . . . . . . . . . . . 87
6.3.1 Update rules . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.1 Perspective protocols . . . . . . . . . . . . . . . . . . . 89
6.4.2 Components . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.3 Local object store . . . . . . . . . . . . . . . . . . . . 93
6.4.4 Crash recovery . . . . . . . . . . . . . . . . . . . . . . 94



xii · Putting Home Data Management into Perspective

6.4.5 Remote data access . . . . . . . . . . . . . . . . . . . 96
6.5 Accessing and moving data . . . . . . . . . . . . . . . . . . . 97

7 Insight: view-based management tools 101
7.1 Frontends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.1 Customizable faceted metadata frontend . . . . . . . . 102
7.1.2 Sort frontend . . . . . . . . . . . . . . . . . . . . . . . 105
7.1.3 Directory frontend . . . . . . . . . . . . . . . . . . . . 106
7.1.4 Search frontend . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Libperspective . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.1 Manipulating file metadata . . . . . . . . . . . . . . . 107
7.2.2 Manipulating views and devices . . . . . . . . . . . . . 108
7.2.3 Application view framework . . . . . . . . . . . . . . . 108
7.2.4 Reasoning about file replicas with overlap trees . . . . 109

7.3 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.1 View manager interface . . . . . . . . . . . . . . . . . 113
7.3.2 Pchatr interface . . . . . . . . . . . . . . . . . . . . . . 115

8 Evaluation 117
8.1 Usability lab study . . . . . . . . . . . . . . . . . . . . . . . . 117

8.1.1 Experiment design . . . . . . . . . . . . . . . . . . . . 118
8.1.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.1.3 Observations . . . . . . . . . . . . . . . . . . . . . . . 125
8.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2 Long-term deployment . . . . . . . . . . . . . . . . . . . . . . 128
8.2.1 Initial usage . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 130
8.2.3 Initial findings . . . . . . . . . . . . . . . . . . . . . . 131

8.3 Performance overheads . . . . . . . . . . . . . . . . . . . . . . 135
8.3.1 System overhead . . . . . . . . . . . . . . . . . . . . . 136
8.3.2 Transfer overhead . . . . . . . . . . . . . . . . . . . . 136
8.3.3 View overhead . . . . . . . . . . . . . . . . . . . . . . 136

8.4 Design choices and performance . . . . . . . . . . . . . . . . . 137



Contents · xiii

8.4.1 Overlap trees . . . . . . . . . . . . . . . . . . . . . . . 138
8.4.2 View-based data synchronization . . . . . . . . . . . . 139
8.4.3 View-based distributed search . . . . . . . . . . . . . . 143
8.4.4 View-based event routing . . . . . . . . . . . . . . . . 147

9 Conclusion 149
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 Future and ongoing work . . . . . . . . . . . . . . . . . . . . 150

9.2.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.2.2 Semantic system deployment . . . . . . . . . . . . . . 151
9.2.3 Visualizing semantic data . . . . . . . . . . . . . . . . 151
9.2.4 Efficient faceted data storage . . . . . . . . . . . . . . 151
9.2.5 Update connectivity . . . . . . . . . . . . . . . . . . . 151
9.2.6 Replica removal and deletion . . . . . . . . . . . . . . 152
9.2.7 Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A Home data contextual analysis questions 153
A.1 Personal questions . . . . . . . . . . . . . . . . . . . . . . . . 153
A.2 Data and Devices . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.3 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B Usability lab study tasks 157
B.1 Welcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.2 Training Views task . . . . . . . . . . . . . . . . . . . . . . . 158
B.3 Training Directories task . . . . . . . . . . . . . . . . . . . . . 160
B.4 Training Volumes task . . . . . . . . . . . . . . . . . . . . . . 162
B.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.6 Mary’s travels . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.7 Concerned Brian . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.8 Mary’s laptop comes home . . . . . . . . . . . . . . . . . . . . 166
B.9 U2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.10 TV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.11 Brian favorites . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.12 Home videos . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



xiv · Putting Home Data Management into Perspective

B.13 Rafting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.14 Travelling Brian . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.15 Travelling Mary . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C Deployment questions 173
C.1 Pre-install interview . . . . . . . . . . . . . . . . . . . . . . . 173
C.2 Weekly interview . . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography 181



Figures

3.1 System usage form . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 The Bradys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Left to right, Paige, Piper and Phoebe . . . . . . . . . . . . . 28
3.4 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Jill’s backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 An example set of devices and associated views . . . . . . . . 67
5.2 View-based architecture . . . . . . . . . . . . . . . . . . . . . 68

6.1 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 Customizable faceted metadata frontend . . . . . . . . . . . . 103
7.2 Sort frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Overlap tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4 View manager interface . . . . . . . . . . . . . . . . . . . . . 114
7.5 Pchatr interface . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.1 View manager interface . . . . . . . . . . . . . . . . . . . . . 119
8.2 Volumes and caching interface . . . . . . . . . . . . . . . . . . 120
8.3 Directory interface . . . . . . . . . . . . . . . . . . . . . . . . 121
8.4 Single replica task results . . . . . . . . . . . . . . . . . . . . 128
8.5 Data organization task results . . . . . . . . . . . . . . . . . . 129
8.6 Sparse collection task results . . . . . . . . . . . . . . . . . . 129
8.7 Ralph’s device setup . . . . . . . . . . . . . . . . . . . . . . . 132

xv



xvi · Putting Home Data Management into Perspective

8.8 Steve’s device setup . . . . . . . . . . . . . . . . . . . . . . . 134
8.9 Remote performance . . . . . . . . . . . . . . . . . . . . . . . 137
8.10 View overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 138



Tables

4.1 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Storage devices . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Data division attributes . . . . . . . . . . . . . . . . . . . . . 57
4.4 Data reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Interesting statistics . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Perspective query language . . . . . . . . . . . . . . . . . . . 73
6.2 Perspective query examples . . . . . . . . . . . . . . . . . . . 74
6.3 Frontend API . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Fontend query . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Perspective RPC calls . . . . . . . . . . . . . . . . . . . . . . 89
6.6 Perspective native API . . . . . . . . . . . . . . . . . . . . . . 90
6.7 Database schema . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.8 Perspective query to SQL . . . . . . . . . . . . . . . . . . . . 94
6.9 Perspective enumerate values query to SQL . . . . . . . . . . 95

7.1 Mapping customizable faceted metadata to Perspective queries103
7.2 Symbolic links in faceted metadata . . . . . . . . . . . . . . . 104
7.3 Mapping sort to Perspective queries . . . . . . . . . . . . . . 106
7.4 Mapping directories to Perspective queries . . . . . . . . . . . 107
7.5 Mapping search frontend paths into native Perspective queries 107
7.6 View attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.7 Device attributes . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Ralph summary . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xvii



xviii · Putting Home Data Management into Perspective

8.2 Steve summary . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Simple benchmark . . . . . . . . . . . . . . . . . . . . . . . . 136
8.4 Overlap tree benchmark . . . . . . . . . . . . . . . . . . . . . 139
8.5 Synchronization methods . . . . . . . . . . . . . . . . . . . . 140
8.6 Search methods . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.7 Event routing methods . . . . . . . . . . . . . . . . . . . . . . 148



1 Introduction

Distributed storage is coming home. An increasing number of home and
personal electronic devices create, use, and display digitized forms of music,
images, videos, as well as more conventional files (e.g., financial records and
contact lists). In-home networks enable these devices to communicate, and
a variety of device-specific and datatype-specific tools are emerging. The
transition to digital homes gives exciting new capabilities to users, but it
also makes them responsible for administration tasks usually handled by
dedicated professionals in other settings. It is unclear that traditional data
management practices will work for “normal people” reluctant to put time
into administration.

An intriguing aspect of home storage is that home users rarely organize
and access their data via traditional folder-based naming—usually, they do
so based on data attributes. Computing researchers have long talked about
attribute-based data navigation (e.g., semantic filesystems [22, 72]), while
continuing to use folder-based approaches. However, users of home and per-
sonal storage live it. Popular interfaces (e.g., iTunes, iPhoto, and even drop-
down lists of recently-opened Word documents) allow users to navigate file
collections via attributes like publisher-provided metadata, extracted key-
words, and date/time. Usually, files are still stored in underlying folders in
the file system, but users often are insulated from naming at that level and
are oblivious to where in the namespace given files end up.

Users have readily adopted these higher-level navigation interfaces, lead-
ing to a proliferation of semantic data location tools [82, 6, 23, 73, 38]. In
contrast, the abstractions provided by filesystems and associated tools for

1



2 · Putting Home Data Management into Perspective

managing files have remained tightly tied to namespaces built on folders.
For example, most tools require that specific subtrees be identified, by name
or by “volumes” containing them, in order to perform replica management
tasks, such as partitioning data across computers for capacity management
or specifying that multiple copies of certain data be kept for reliability. Since
home users double as their own system administrators, this disconnect be-
tween interface styles (semantic for data access activities and folders for
management tasks) naturally creates difficulties. This dissertation presents
views as an abstraction to mitigate this disconnect.

1.1 Thesis statement

The view abstraction, which characterizes files using attributes rather than
folders, simplifies replica management tasks in the unique area of home

storage. The view abstraction can be efficiently implemented by augmenting
and adapting distributed filesystem mechanisms.

1.2 Views

To correct the disconnect between semantic data access and folder-based
replica management, I propose replacing the traditional volume abstraction
with a new primitive that I call a view. A view is a compact description
of a set of files, expressed much like a search query, and a device on which
that data should be stored. For example, one view might be “all files with
type=music and artist=Beatles stored on Liz’s iPod” and another “all files
with owner=Liz stored on Liz’s laptop”. Each device participating in a view-
based filesystem maintains and publishes one or more views to describe
the files that it stores. A view-based filesystem ensures that any file which
matches a view will eventually be stored on the device named in the view.

Since views describe sets of files using the same attribute-based style
as users’ other tools, view-based management replica management should
be easier than folder-based file management. A user can see what is stored
where, in a human-readable fashion, by examining the set of views in the



1.3 Methodology · 3

system. She can control replication and data placement by changing the
views of one or more devices. Views allow sets of files to overlap and to
be described independently of namespace structure, removing the need for
users to worry about application-internal file naming decisions or unfortu-
nate volume boundaries. Semantic management can also be useful for local
management tasks, such as setting access control and other policies on files,
in addition to replica management.

The view abstraction can also be used as an organizational structure for
distributed filesystems to allow devices to share storage and provide fault-
tolerance and mobility guarantees without requiring a central server. Each
device holds a subset of the data and can access data stored on any other
(currently connected) device.

1.3 Methodology

I demonstrate the advantages and feasibility of views in several ways. Since
this dissertation is focused on providing manageable home storage, my eval-
uation is primarily focused on user studies of management and usability.

First, I performed an initial contextual analysis and test system deploy-
ment to increase our understanding of the unique needs of the home environ-
ment and the way that distributed filesystems might affect this environment.
I describe observations from these initial explorations and how they support
a view-based approach to replica-management.

Second, I built Perspective1, a prototype view-based filesystem that runs
on Linux and OS X, to show the feasibility of implementing such a system.
and provide a platform for deployment studies. In deployments, Perspective
provides normal file storage as well as being the backing store for iTunes
and MythTV in several households, in addition to our research lounge.

Third, I performed users studies to evaluate the impact of view-based
management. I created a user interface for replica management and placed
this interface on top of a view-based system and two more conventional
approaches. In order to minimize the effects of the interface itself, I kept the

1In seeing many views, one gains Perspective.



4 · Putting Home Data Management into Perspective

interface as similar as possible, while varying the architecture underneath
it. I then asked non-technical users to perform a set of sample management
tasks in the lab using each interface. Results showed up to a 6x improvement
in the number of users able to correctly complete these tasks.

Fourth, I present performance experiments with the Perspective proto-
type. While performance is not the focus of this dissertation, these experi-
ments confirm that Perspective can provide consistent, decentralized storage
with reasonable performance. Even with its application-level implementation
(connected to the OS via FUSE [20]), Perspective performance is within 3%
of native filesystem performance for activities of interest.

Fifth, I have deployed Perspective into the homes of several lab members,
and I present an initial exploration into the advantages and challenges of a
view-based system in actual long-term usage.

1.4 Contributions

This dissertation contains a number of contributions to the literature. First,
I present two exploratory studies into home storage. While the literature
contains a rich history of home studies, my studies each have unique focus.
The deployment study is unique in focusing on the way non-technical users
react to a distributed filesystem. The contextual analysis of home users is
unique in its focus on device upgrade and reliability of home data.

Second, I present the first semantic abstraction for replica management,
the view, and a user study evaluating the usability impact of semantic man-
agement in contrast with more conventional approaches.

Third, I present a group of algorithms needed to provide the view ab-
straction in a distributed filesystem. These algorithms include the first con-
sistency protocol that allows for semantically-defined partial replication in
an eventually consistent, heterogeneous, decentralized filesystem environ-
ment. These algorithms also include methods to provide efficient search in
a view-based system.

Fourth, I present Perspective, the first filesystem to provide view-based
replica management. Perspective is fully functional and is in use in several



1.5 Roadmap · 5

household in the Pittsburgh area. In addition to showing the feasibility of
a view-based filesystem, the Perspective prototype provides a platform for
continuing research into distributed semantic storage, and distributed home
storage.

Fifth, I present a group of tools which allow users to manipulate file
replicas using the view abstraction. I introduce overlap trees as a mecha-
nism for efficiently reasoning about how many replicas exist of a particular
dataset, and where these files are stored, even when no view exactly matches
the attributes of the dataset. I present the view manager interface as an in-
terface for semantic replica management. I also present customizable faceted
metadata as a way to browse semantic filesystem data.

Sixth, I present results from an initial deployment of the Perspective
filesystem. These results explore some of the initial advantages and chal-
lenges of view-based management in practice.

1.5 Roadmap

Chapter 2 presents related work. Chapter 3 presents a deployment study of
a home server system. Chapter 4 presents a contextual analysis of home data
management. Chapter 5 presents the design points gleaned from these stud-
ies and a view-based architecture based on these studies. Chapter 6 presents
Perspective, our view-based filesystem prototype. Chapter 7 presents In-
sight, a set of prototype view-based tools. Chapter 8 presents evaluations
of the usability of the views-abstraction, the performance of Perspective,
and initial findings from a deployment of Perspective. Chapter 9 presents
conclusions and future work. The appendices present details from several of
the user studies.



6 · Putting Home Data Management into Perspective



2 Background and related work

In this section I outline the wealth of previous work on which this disserta-
tion is built. First I outline work calling for or using system-focused user-
oriented design. Second, I describe studies that utilized similar methods or
investiaged similar topics as the user studies in this dissertation. Third I de-
scribe distributed filesystems that have similar design to that of Perspective.
Fourth, I describe semantic filesystems and semantic interfaces that relate
to the Insight toolset.

2.1 Usable system design methodology

This dissertation presents an example of the application of design techniques
from HCI to the systems challenge of filesystem design. While the fields
of system design and HCI have developed different design and evaluation
methodologies for good reasons, there are many problems which require a
combination of such techniques. The home is one such environment, where
a challenging environment requires sophisticated, and efficient distributed
algorithms, but management by novice users also requires careful attention
to usability.

In such environments, it is not enough to design an interface without a
knowledge of how the system must be built or to design a system without
an understanding of the user needs and workflows. Instead, usable system
design problems require a system design influenced by user needs and work-
flows.

This thesis presents a combined methodology and its application to dis-
tributed home storage. I first performed exploratory studies of how users

7



8 · Putting Home Data Management into Perspective

interacted with distributed filesystems, then performed a targeted contex-
tual analysis to study the home constraints. I used the information from
these studies to design the Perspective filesystem. Finally, I tested the sys-
tem using a lab usability study and an actual filesystem deployment, studied
using regular in-situ semi-structured interviews.

While this approach is uncommon in the systems community, the HCI
community has a long history of using these kinds of design methodolo-
gies [44, 31, 19]. The novelty is not the specific methodologies themselves,
but the application to specific system problems in filesystem design.

There has also been related work on architecting systems for usability.
The most closely related is by Ebling et al. [15], who performed a user
study showing how extra visability into the Coda caching scheme improved
accuracy of technical users on critical tasks. John et al. [35] argue that
architectures are critical for usability and present a set of example scenarios
to support this claim.

2.2 Home storage studies

Another contribution of this dissertation is the information gained from the
specific user studies I performed. While I am not aware of previous research
that examines users’ behavioral responses and adjustments to shared home
data systems in the same manner as the studies in this dissertation, a number
of studies have employed similar techniques or investigated closely related
issues.

2.2.1 Contextual analysis

A contextual analysis or contextual inquiry is a set of in-situ, semi-structured
interviews with users to explore the way in which they think particular tasks
or technologies [8]. This approach allows interviewers to learn about the
problems users find difficult and the way in which they go about problems in
a space. There is a rich history of contextual analysis and similar techniques
in home technologies [44, 31].



2.2 Home storage studies · 9

Grinter et al. [26] studied households with advanced networking setups in
the home, exploring the management of the physical networks (e.g., wireless
routers) installed by the owners themselves. They noted that data sharing
between devices was a problem that households found vexing and did not
know how to address. Our findings concur with many of the observations in
the Grinter study.

Brush et al. [12] conducted a study of how home users share technol-
ogy devices in the home. Our studies support and enhance many of the
results from this study, including challenges in dealing with logins, the lack
of password usage, and the specialization of technological devices.

A number of studies have also studied how home technologies interact
with home social norms and utilization of locations within the home [18, 19].
Our studies have many similar findings, but also provide a counterpoint. Like
Brush et al. [12], we found that the number of home storage devices had
dramatically increased, leading to less contention for usage of each resource.

Marshall has performed a large number of contextually analysis inves-
tigations into the way users manage their data over long-term periods, an
area she calls personal archiving [41, 42, 43, 39]. Many of the observations
from our contextual analysis support findings in these studies, including the
frequency of data death due to device upgrade or failure. Marshall has also
studied how tagging schemes differ from other metadata on Flickr [40].

A collection of studies have analyzed the filesystem behavior of enterprise
settings. Oulasvirta et al. [49] studied how users switch between different de-
vices at work, and noted that users found many reasons to use a range of
devices at work, and observed a variety of different methods for handling
device swapping. While not focused specifically on either home or business,
several studies have also explored the rich social implications of music shar-
ing in distributed environments [78].

There have also been a variety of related studies of portable technolo-
gies [16, 52, 66]. For example, Aipperspach et al. studied the locations where
notebook computers are used in the home, using a similar combination of
tracing and trace-prompted interview techniques, noting stable patterns of
usage [3]. O’Hara et al. [30] studied the social implications of portable video,



10 · Putting Home Data Management into Perspective

following up a rich set of prior work on TV usage [37, 11]. This study re-
inforced the fact that even within the home, users may employ multiple
devices to access the same content.

A variety of researchers have also studied home automation technologies
and their impact on the family [75, 7]. For example, Woodruff et al. de-
scribed how home automation systems in Orthodox Jewish households play
an important role in family worship [83].

The home data management contextual analysis described in Section
4 borrows methodologies from these studies and touches on many themes
explored in these studies. However, it is unique in focusing on users’ reactions
to device upgrade, device failure, and data preservation.

2.2.2 Deployment

A second approach is to deploy a new technology into users’ homes and
to study the impact this technology via interviews like those of contextual
analysis. I performed two of these studies, one using a home server and one
using Perspective. The HCI literature also has a rich history of these kinds
of deployments.

O’Brien et al. described the impacts of a new desktop box on a set of
households [48]. They found that users were not necessarily happy with
having expanded functionality in a single device, and explored many of the
social issues involved. Our study kept the devices separate, but allowed for
data sharing between them. Still, many of our findings reinforce the social
factors mentioned in the O’Brien study.

Another deployment study built a “smart home” prototype that included
control of things like locks and windows, asked several families to live in it,
and studied the results [60]. Many of the tensions found in this study are
present in our studies as well. For example, families and system designers
struggled to balance the need for security and customization with ease of
usage.

A similar deployment of a home storage system was performed at Intel
by Hady et al. [29], in which I was initially involved. They deployed a sample



2.3 Distributed filesystems · 11

Union-FS based approach into consumer homes and published a white-paper
on the anecdotal results. As with the home server study in this thesis, they
found that immediate data access was greatly liked by end users.

This dissertation describes two deployment studies. They are both
unique in that they study the social impact of the deployment of a dis-
tributed filesystem in study households. In the home server study de-
scribed in Section 3, I deployed an off-the-shelf distributed filesystem in
non-technical households. Ian the Perspective deployment described in 8.2,
I deployed the Perspective semantic distributed filesystem into technical
households.

2.3 Distributed filesystems

Another contribution of this dissertation is the Perspective filesystem it-
self. A primary contribution of Perspective is the use of semantic queries to
manage the replication of data. Specifically, Perspective provides accessibil-
ity and reliability guarantees over semantic, partially replicated data. This
builds on previous semantic systems that used queries to locate data and
folders to manage data. Our user study evaluation shows that, by support-
ing semantic management, Perspective can simplify important management
tasks for end users.

Another contribution is a filesystem design based on in-situ analysis of
the home environment. This overall design could be implemented on top of a
variety of underlying filesystem implementations, but we believe that a fully
view-based system provides simplicity to both user and designer by keep-
ing the primitives similar throughout the system. While no current system
provides all of the features of Perspective, Perspective builds on a wealth of
previous work in data placement, consistency, search and publish/subscribe
event notification. In this section, I discuss this related work.

2.3.1 Data placement

Views allow flexible data placement used to provide both reliability and
mobility. Views are another step in a long progression of increasingly flexible



12 · Putting Home Data Management into Perspective

data placement schemes.
The most basic approach to storing data in the home is to put all of the

data on a single server and make all other devices in the home act as clients
of this server. Variations of this approach centralize control, while allowing
data to be cached on devices [36, 71].

To provide better reliability, AFS [69], LOCUS [79], and Deceit [70] ex-
panded the single server model to include a tier of replicated servers, each
connected in a peer-to-peer fashion. Each server stores a copy of some num-
ber of volumes, which server as the first element of the file path. However,
clients cannot access data when they are out of contact with the servers.
Coda [67] addressed this problem by allowing devices to enter a disconnected
mode, in which devices use locally cached data defined by user hoarding pri-
orities. However, hoarded replicas do not provide the reliability guarantees
allowed by volumes because devices make no guarantee about what data
resides on what devices, or how long they will keep the data they currently
store. Views extend this notion by allowing volume-style reliability guaran-
tees along with the flexibility of hoarding in the same abstraction.

A few filesystems suggested even more flexible methods of organizing
data. BlueFS [47] extended the hoarding primitive to allow client devices
to access data hoarded on portable storage devices, in addition to the lo-
cal device, but did not explore the use of this primitive for accessibility or
reliability beyond that provided by Coda. Footloose [50] proposed allowing
individual devices to register for data types in this kind of system as an alter-
native to hoarding files, but did not expand it to general publish/subscribe-
style queries or explore how to use this primitive for mobility, reliability,
management or distributed search.

2.3.2 Consistency

Perspective supports decentralized, topology-independent consistency for
semantically-defined, partially replicated data, a critical feature for the home
environment. While no previous system provides these properties out of the
box, PRACTI [14] also provides a framework for topology-independent con-



2.3 Distributed filesystems · 13

sistency of partially replicated data over directories, in addition to allowing
a group of sophisticated consistency guarantees. PRACTI could probably be
extended to use semantic groupings fairly simply and, thus, provide consis-
tency properties like Perspective. Recently, Cimbiosis [59] has also built on
a view-style system of partial replication and topology independence, with
a different consistency model.

Cimbiosis also presents a sync tree, which provides a distributed algo-
rithm to ensure connectedness and routes updates in a more flexible manner.
This sync tree could be layered on top of the consistency model of Perspec-
tive or PRACTI to provide these advantages.

I chose the Perspective approach over Cimbiosis, because it does not
require any device to store all files, while Cimbiosis has this requirement.
Many of the households in our contextual analysis did not have any such
master device, and appeared unwilling to spend the money required to have
such a device, leading us to believe that requiring it could be a problem.
Perspective also does not require small devices to track any information
about the data stored on other devices, while PRACTI requires them to
store imprecise summaries. However, there are advantages to each of these
approaches as well. For example, PRACTI provides a more flexible consis-
tency model than Perspective, and Cimbiosis a more compact log structure.
A full comparison of the differences between these approaches, and the rel-
ative importance of these differences, is not the focus of this dissertation. I
present Perspective’s algorithms to show that it is possible to build a sim-
ple, efficient consistency protocol for a view-based system. However, section
8.4.2 outlines a qualitative analysis of these differences.

Previous peer-to-peer systems such as Bayou [76], FICUS [27] and Pan-
gaea [64] extended synchronization and consistency algorithms to accom-
modate mobile devices, allowing these systems to blur or eliminate the dis-
tinction between server and client [58, 54]. However, none of these systems
fully support topology-independent consistency with partial replication. En-
semBlue [52] takes a middle ground, providing support for groups of client
devices to form device ensembles [68], which can share data separately from
a server through the creation of a temporary pseudo-server, but requiring a



14 · Putting Home Data Management into Perspective

central server for consistency and reliability.
Podbase [57] extends an eventual consistency model by automatically

inferring that identical files are replicas of one another, an approach which
could be useful on top of a number of eventual consistency systems.

2.3.3 Search

Perspective uses views to provide efficient distributed search, by guiding
searches to appropriate devices. The most similar work is HomeViews [21],
which uses a primitive similar to Perspective’s views to allow users to share
read-only data. HomeViews combines capabilities with persistent queries to
provide an extended version of search over data, but it does not use them
to target replica management tasks like reliability. View-based search also
builds on previous work like Diamond [32, 63], which pushes search into
storage devices, but does not attempt to selectively choose which devices to
search. A full performance comparison is highly dependent upon the work-
load and data layout, but section ?? contains a qualitative analysis of the
advantages and drawbacks of view-based search.

2.3.4 Replica indices and publish/subscribe

In order to provide replica coherence and remote data access, filesystems
need a replica indexing system that forwards updates to the correct file
replicas and locates the replicas of a given file when it is accessed remotely.
Previous systems have used volumes to index replicas [67, 69], but did
not support replica indexing in a partially replicated peer-ensemble. Ensem-
Blue [52] extended the volume model to support partially replicated peer-
ensembles by allowing devices to store a single copy of all replica locations
onto a temporarily elected pseudo-server device. EnsemBlue also showed
how its replica indexing system could be leveraged to provide more general
application-level event notification. Perspective takes an inverse approach.
It uses a publish/subscribe model to implement replica indexing and, thus,
application-level event notification. This matches the semantic nature of
views.



2.4 Semantic interfaces · 15

This work does not propose algorithms beyond the current pub-
lish/subscribe literature [2, 9, 13, 55, 74]. Instead, it applies pub-
lish/subscribe algorithms to the new area of file system replica indices. Using
a publish/subscribe method for replica indexing provides advantages over a
pseudo-server scheme, such as efficient ensemble creation, but also disadvan-
tages, such as requiring view changes to move replicas. Again, a full compar-
ison of alternative approaches is not the focus of this dissertation. I present
Perspective’s algorithms to show that replica indexing can be performed effi-
ciently using views. Section 8.4.4 provides a qualitative comparison between
various replica indexing schemes.

2.4 Semantic interfaces

I believe that effective home data management will use search on data at-
tributes to allow flexible access to data across heterogeneous devices. Per-
spective takes the naming techniques of semantic systems and applies them
to the replica management tasks of mobility and reliability as well.

2.4.1 Attribute-based naming

The term semantic has been applied to a wide range of differing technologies.
To be more specific, I will use the term attribute-based naming to describe
the naming methodologies Perspective espouses. These techniques assign
some number of attributes or tags to an item and, then, allow the user to
search for all items with a matching tag. The format of these tags may differ
from system to system. For example, some systems use single-value tags,
while others use name-value pairs. Some tag names are flat, while others are
hierarchical.

This is in contrast to the traditional files-and-folders filesystem naming
methodology, which places each file in a folder, which can then be placed
into another folder, etc. In this system, each file has a path that uniquely
identifies it in the system. The user can browse or set policies on folders and
all their subfolders.



16 · Putting Home Data Management into Perspective

A huge percentage of applications for the home use attribute-based nam-
ing. These include photo applications [33, 53, 4], music players [34, 45], online
data sharing sites [1, 17], email, and even document editing [24]. Operating
systems themselves are also bypassing traditional files-and-folders organiza-
tions by using recently-accessed document lists, search tools, and semantic
folders.

Despite this plethora of attribute-based tools for locating and organiz-
ing data, we are unaware of management tools (file replication, backup,
copying, etc.) that utilize attribute-based groupings. Instead these interfaces
are tightly coupled to files-and-folders. We adapted the Expandable Grids
toolkit [62], first developed for managing permissions in a files-and-folder
system, to build our interface for view manipulation.

While the lab study in section ?? of this dissertation shows that some
tasks are harder to perform in a files-and-folders naming than attribute-
based naming, the most important challenge the study illustrates is the
mismatch between the type of naming used by applications and that used
by management tools. When asked to use an attribute-based application
(and most home applications are attribute-based), users found it very diffi-
cult to manage that same data using a files-and-folders based management
tool. As user applications have become more attribute-based, not less, over
time, it is important for management tools and structures to allow users to
manage their data with attribute-based naming as well. Unfortunately, the
two techniques are difficult to mix.

2.4.2 Comparing attributes and folders

Attribute-base naming schemes and files-and-folders have several fundamen-
tal differences that make it difficult to convert from one naming scheme into
the other. While there are certainly cases where a conversion is easily pos-
sible, there are many important cases where it is not.

Attributes allow for multiple groupings: Attributes are specifically
built to allow for multiple ways of grouping the same set of files, while folders
are not. A file may show up in many different searches, but only a single



2.4 Semantic interfaces · 17

directory path. While the single-path-single-file approach can be helpful in
programmatic access to data, it makes it difficult to be flexible in how data
is accessed and found by an end user. For example, a photo may be part
of a roll of photos imported at once from a camera, several photo albums,
photos taken at a specific location, and photos containing various people.

Attributes are easily hideable: Attribute-based systems allow users
and the system to add large numbers of attributes to files while only re-
quiring end users to interact with the attributes they find valuable. While a
file may have many attributes associated with it, only those attributes that
interact with the current search are exposed to the user. In contrast, there is
no easy way to contract a file path in a folder-based system; all the elements
of the path must be considered when accessing a file. This forces users and
systems to be careful to only add attributes that are known to be valuable,
since extra attributes add complexity to all operations on the file.

This makes attributes a better fit for the metadata-rich data in the
home. For example, audio files come with a large number of attributes such
as album, artist, record label, etc. These attributes can be very valuable, but
many of them are not utilized by most users in most queries. Thus, most
folder-based systems only put a small number of these attributes into the
folder structure, making the additional attributes unusable in organizing the
data from the filesystem.

Attributes are easily composable: A search can filter based on any
number of combinations of attributes. In contrast, in a folder-based scheme
only attributes in subtrees are composable. Even if a file has multiple hard-
links there is no way to compose the elements contained in them. This can
be especially important when the user is unsure exactly how tags will be
used when they initially associate the tags with the file. For example, when
creating a photo a user is likely to know the outing on which the photo was
taken, the people in the photo, and the time the photo was taken, but is
unlikely to know whether she will want to organize the photos by year and
person, outing and year, year and person, etc. Attributes allow her to decide
how to organize the photos later and, indeed, to switch from one structure
to another when needed.



18 · Putting Home Data Management into Perspective

Attributes are easily transposable: It is simple to sort a group of
files by either genre or artist, for example. In contrast, folder-based systems
have an inherent ordering in the path elements that cannot be undone. So,
for example, if a folder tree is organized by genre and then by artist, it
is difficult to sort the files by artist, even if the information is contained
in the tree. This is especially critical when different tasks require different
first-level groupings. For example, many current trees are divided by user
followed by file type. This may be perfect for backing up all of one user’s
data, but a poor fit for a home music player, which would like to see all
Music, regardless of the owner.

Attributes are bound to files: Attribute-based systems assume that
tags belong to a given file. They are edited, created and destroyed on files,
copied with files, etc. In contrast, files-and-folder systems assume that names
are part of the folder, not the file itself. If the file is copied it’s path does
not follow it, and there is no way to edit other paths that may point to the
same file.

Links: Hard links and symbolic links allow folder-based approaches to
give a file multiple names in multiple folders. This extends a files-and-folders
based system to include multiple groupings and name hiding. However,
it still does not provide composition, transposition or file-binding. Follow-
ing are example limitations of links that make them incompatible with an
attribute-based system.

– Filesystems provide no way to list and edit all links to a given file.
Each link is only accessible from the directory in which it resides. This
prevents file-binding.

– Both hard and symbolic links provide hazy control over deletion of a
file separate from removing and adding links. For symbolic links, re-
movals on all paths but the “real” path are link removal, while removal
on the “real” path is a deletion. For hard links, removing all links is
a deletion, but removing any individual link is a link removal. This is
further complicated by the lack of a good interface to determine what



2.4 Semantic interfaces · 19

other links exist to the file. This again is due to the lack of file-binding
of names.

– Links provide no easy way to compose link paths (for example, the
same file may have the name /Music/foo.mp3 and the name /Bran-
don/foo.mp3, but there is no way to find all files that are in both the
/Music and /Brandon folders). This prevents composition and trans-
position.

These omissions make links difficult to manage, as evidenced by their
limited usage in most filesystems. For example, Windows does not provide
hard links through any standard interface, the Linux finder and terminal
provide limited support, and almost no applications use links for items they
expect to be manipulated by end users.

That said, links could be used as the basis of an attribute-style system
if they were extended to provide the above features. Once added, a link
style system would be indistinguishable from an attribute-based system with
hierarchical tags, with a particular viewing methodology. There may be value
in this implementation of tags for efficiency and/or initial adoption, although
it is not immediately clear how exactly to extend links to provide these
features.

2.4.3 Perspective’s attribute-based naming

Perspective uses name-value pair attributes, because I believe the extra
structure is important when using queries for file placement and security
policies, which are less tolerant to false positives than search. Tags in Per-
spective are flat, with no hierarchy. It would not be difficult to augment
Perspective to use hierarchical tags, but it is unclear how to modify faceted
metadata, which Perspective uses for browsing and setting policy, to accom-
modate hierarchical tags.



20 · Putting Home Data Management into Perspective

2.4.4 Faceted metadata

Perspective uses faceted metadata to access and modify file metadata. In a
faceted-metadata approach, the system allows the user to first choose an
attribute of interest from a list of attributes. It then displays all the values
for that attribute. After selecting a particular value the user is then allowed
to either view all matching files or choose another attribute to use to refine
their search. This technique has a long history of related work.

The Semantic Filesystem [22] proposed the use of attributes to locate
data in a file system, and proposed a faceted-metadata style approach. Sub-
sequent systems showed how these techniques could be extended to include
personalization of the search queries [25].

Flamenco [84] uses faceted metadata to browse documents in a static
corpus. Microsoft’s proposed WinFS filesystem also incorporated semantic
naming [82]. Other researchers have explored ways to expose a semantic
structure in a method similar to folders [80]. Microsoft’s Windows 7 provides
libraries that allow the user to sort their data using different attributes, in
a stripped down version of faceted metadata [81].

Perspective uses a novel form of faceted metadata called customizable
faceted metadata, which helps tune what attributes are displayed to the
user when a large number of attributes exist in the filesystem. Customizable
faceted metadata is described in Section 7.1.1.

2.4.5 Keyword search

Other systems provide search functionality to files-and-folder systems [6,
23, 38, 73]. While all of these systems use name-value pairs internally, the
interface they expose is keyword search. In keyword search the user simply
types a word and the interface displays all files with tag values that contain
the keyword. While keyword search has more false positives than strict tag
comparisons, ranking algorithms can reduce the problem for the end user.
Keyword search is very familiar to users from the web, and is powerful in
its simplicity. However, these approaches are specifically tuned to providing
search on automatically-extracted file attributes. Unlike faceted metadata



2.4 Semantic interfaces · 21

approaches, they do not provide easy interfaces for users to browse files
via tags, modify tags, or create their own tags. Keyword search can be
implemented using Perspective’s name structures, although the currently
implementation is not tuned for this kind of usage. However, we believe that
the extra structure provided by faceted metadata is important not only for
browsing and modifying tags, but also when using queries for file placement
and security policies, which are less tolerant to false positives than search.



22 · Putting Home Data Management into Perspective



3 Home server deployment study

While there is a history in systems literature of deploying filesystems in
technical labs and groups, there are no studies of which I am aware that
explore non-technical users’ response to these kinds of distributed systems.
My studies have confirmed that non-technical users often have very different
reactions to distributed filesystems than highly technical users.

In fall 2006 I deployed a file sharing system using off-the-shelf compo-
nents into two non-technical households. This provided me an opportunity
to study non-technical users reactions to this system.

This chapter outlines the methodology of this study and the findings. [65]
These findings can be grouped into three main observations. First, imme-
diate data access had a large and positive impact on users’ usage of their
data. Second, the devices, users, and management styles of these household
were dynamic and surprisingly complex compared to the number of devices
involved. Third, privacy was important to home users, but their notions of
privacy and security did not match well with traditional filesystem access
controls.

3.1 Methodology

To explore the effects of shared data on a household, I recruited two house-
holds from the Portland, Oregon area, installed a home data-sharing system
in their homes, and observed them over two and a half weeks. My anal-
ysis methods consisted of both system-level tracing and ethnographically-
inspired interviews. While the short length of this study limits my ability

23



24 · Putting Home Data Management into Perspective

to generalize all findings, I was able to observe several high-level challenges
involved in adopting such a system.

I installed the system in each household and provided technical support
as needed throughout the study. At the end of the study, I removed the
technology and returned things to their pre-study state. Each household
was compensated monetarily for their participation.

3.1.1 System description

The system that I installed used a single Windows machine with Windows
file sharing as the data server. I also introduced two Linux-based digital
video recorders (DVRs) into the house, which I connected to existing TVs.
I also added a laptop-based stereo system running iTunes. In addition, I
pointed the “My Documents” folder of all of the household computers into
the data server.

Each device in the household stored all of its data on the single server
machine over Windows file sharing. This allowed all devices to access any
data stored in the system. The following list explains the directory structure
on the server and device targeting.

– Music: All music files were stored in this folder. The stereo, DVRs and
iTunes applications on household computers pointed to this directory.

– Video:

• Movies: All movies were stored in this folder. The DVRs had
access to this directory for movies.

• TV: The DVRs placed recordings of TV shows in this folder,
which other devices could also access as mpeg streams.

– Users: Each user had their own sub-folder in this folder where the
files from their “My Documents” were placed.

I provided users with 250GB of storage and backed up the full system
in case of system failure. To avoid problems with network bandwidth, I put
the server and DVRs on a wired gigabit network and connected this wired
network to the household’s wireless router.



3.1 Methodology · 25

Figure 3.1. System usage form. This shows an example of the forms I
used to review system usage with each household. Each circle represents one
day, across time, and different colors represent different types of access. This
shows four days of access on Phoebe’s laptop.

To allow household members to control access to their personal files, I let
them specify a private folder only available to a user-specified set of devices
and a public folder available to all machines.

3.1.2 Investigation methods

Questionnaires: To begin the study, I conducted a group interview with the
collective memberships of each household. I also held one-on-one interviews
during which I asked each household member to help me fill out a form
detailing the devices they used, the data they stored on each, and their
reliability, mobility, and privacy preferences for those data.

Technology tour: At the outset of the study, I had the household mem-
bers walk me through their homes, showing me each digital storage or play-
back device, and describing what data was stored on it and how it was used.
This allowed me to get a sense of the technology they used regularly and
the perceived differences between devices.

Tracing: I added a tracing module to the server to allow me to see which
data users accessed from which devices at which times, and provide some
insight into daily and weekly patterns in access behaviors.

Weekly interviews: To get a better sense of users’ interactions with the
system, I held weekly interviews with each household. For these interviews,



26 · Putting Home Data Management into Perspective

Figure 3.2. The Bradys. Left to right: Mike, Carol, Oliver, Bobby and
Peter.

I brought visual representations of their weekly traces, to start the conver-
sation about usage behavior, as shown in Figure 3.1. Both the diagramming
technique and its application as an interview prompt were borrowed from
Aipperspach’s study of laptop usage [3].

3.1.3 Household selection

The goal of this study was to explore the effect of data sharing across devices
in households. In order to minimize the learning curve involved in adopting
such a system, I recruited households that listened to music and that already
had cable and Internet access. However, I avoided self-described computer
experts, to avoid biasing the study towards this population.

I screened for households with at least three adult members, so that the
behaviors and patterns would be more involved than what might be found
in a two-person household. Since the system did not support taking devices
and data out of the household, I targeted households that did not frequently
take devices outside of their home.

I recruited two households representing different configurations by post-
ing flyers and through snowball sampling following personal connections.
One household consisted of a blended family, and the second consisted of a
set of adult roommates.



3.1 Methodology · 27

Household 1 - The Bradys: Figure 3.2 shows the Brady1 family. Mike
and Carol Brady married 10 years ago, and both had children from previous
marriages. The Bradys lived in a suburb of Portland. Two of Carol’s sons
still lived at home. Peter was in high school and was interested in computers.
Bobby was in junior high and was perhaps the least interested in technology
in the family, although he played video games with his brothers. Carol’s
nephew Oliver also lived with the Bradys. Oliver was attending college and
had recently started studying information management. Oliver was living
with the Bradys for a year and often worked somewhat separately from the
family. Carol’s oldest son, Greg, did not live with them, but was a frequent
visitor, along with his fiancé, Marcia.

The Brady’s had two TVs that they connected to the system in the house:
the upstairs TV in the living room and the downstairs TV in the den. A
stereo system with large speakers was located in the family’s living room.
At their request, we hooked our new laptop stereo system through their
existing system. Carol had a new laptop that she used to run a business out
of her home and that the rest of the family used on occasion for personal
activities. Oliver had his own laptop that he used for school and that his
cousins used to play games. Peter was the primary user of an old desktop
computer, which was located in the downstairs den. Bobby had an even older
desktop in his room, which he only used for games, that was not connected
to the Internet.

Household 2 - Piper, Paige and Phoebe: Figure 3.3 shows Piper,
Paige and Pheobe. All three were young professional women in their mid to
late 20s. Piper owned their house in another suburb of Portland and had
family nearby. She taught film and health at a nearby high school. Phoebe
had lived with Piper for about a year and was an interior designer. Both
Piper and Phoebe liked technology and enjoyed tinkering with it. They did
a lot of filming and photography, including a large number of home videos
and images modified in Photoshop. Paige moved in a few months before
the study. Paige had little interest in technology and used it sparingly. The

1All names have been changed to preserve anonymity.



28 · Putting Home Data Management into Perspective

Figure 3.3. Left to right, Paige, Piper and Phoebe.

Figure 3.4. System setup. This photo shows one DVR and the stereo setup
in Piper’s living room.

three roommates had many common friends and spent a lot of time together.
They often threw parties and had friends over to their house.

Piper, Paige and Phoebe chose two TVs in the house to connect to the
system: one in the main living room and one in the study (see Figure 3.4).
At their request, we put the laptop-based stereo system in the living room.
Piper owned a desktop computer that was placed in the study. Phoebe had
a fairly modern laptop that she used throughout the house, including in
her bedroom. Paige owned an older laptop that was not connected to the
Internet and that she usually used in her bedroom. Piper used a portable
hard drive to store and transport her films.



3.2 Instant data access · 29

3.2 Instant data access

One key observation from the study is that instantaneous data access has a
big impact on the way users interact with their data. While they could carry
media from device to device before having the system, the effort required
inhibited the data usage of both the households. Once they were able to
access the data immediately on any device, they told us they used their
data much more frequently. They also reported that they spent more time in
public places, as their private data was now connected with public devices.
This section outlines the data sharing methods that the households used
previous to the installation and the impact of the deployment on their usage.

Pre-study file sharing methods: Before installation of the system,
household members primarily used email and physical media to move data
from device to device. They used CDs and DVDs (and, in one case, a portable
hard drive) to transport large media, and USB drives and email for smaller
files.

The common element of all these methods is the need to explicitly copy
data from one device to another, often by moving a piece of media or a
device to the location where the data is desired. We found that making data
transparently available, thus removing the need to move data to the viewing
device, improved the usage experience.

Despite the heavy use of distributed file systems in the enterprise, no
one in either household used such file sharing systems at home or, for the
most part, outside the home. Piper used two computers at work that were
supposed to share data, but because of technical problems they did not. She
explained that she “gets a lot of exercise” running data from one machine
to the other.

Instant data access increased data usage: Intra-device data sharing
led to a reported increase in data usage over the methods listed above. Study
participants expressed great enthusiasm for having data from multiple users
aggregated at shared devices, like the stereo and TV.

However, despite this enthusiasm for sharing data between devices, the
study reinforced the fact that current methods limit the amount of data



30 · Putting Home Data Management into Perspective

people will use. Phoebe explained that having the data readily accessible
made them think about it more.

Phoebe: Our homemade movies we used more, pictures we were all able
to view those. It was just something, because it was there, we thought about
it more. You know, like I said before it was more accessible. So it’s in front
of you more.

Factors that contributed to users’ perceived contrast in the accessibility
of their files — and, therefore, of their expressed likelihood of using them
given the aggregated storage systems — included the simple removal of the
need to compile media selections and physically retrieve storage media, the
danger of damaging (and mess of managing) physical media, and the imme-
diacy of shared data resources. Piper explained that the hassle of moving
media made a large difference in the amount they used the stereo. She ex-
plained that they did not use the stereo much without the sharing system.

Piper: It’s SO much easier when it’s all just files on there. I mean the
difference is ridiculous. ’Cause if you want to just switch out you can. And
now you actually have to open up the thing, and take out the thing, put a
new one in.

For user-generated content, another inhibitor to sharing was the need to
create the media in the first place. For example, despite her excitement at
sharing her videos, Piper explained that even after a year of work, she had
yet finish the DVD needed to share them with others.

Carol’s treatment of her photos reinforces this point. She was very proud
of her photos: In fact during our tour of her home, when we simply mentioned
her digital camera, Carol stopped and spent five minutes showing photos to
the interviewer on a small camera screen. While she had bought CDs to
transfer the photos over, she was still showing people the photos on the tiny
camera screen because of the hassle of transferring them to a computer.

Carrying media around also led to conflicts between household members.
One of the big reasons Mike didn’t want a TV in the living room was the
way the kids handled the removable media.

Mike: [Downstairs the kids] will have 20 stacks of videos out, we don’t
understand that, why don’t you put the video away after you finish? ... they



3.2 Instant data access · 31

still do the same thing with videos in [the living room]. No matter, nine years
of telling them to put it away, they still pop ’em out and leave ’em out on
... the floor.

In contrast, Mike and Carol were happy to have the stereo in the living
room, because they did not feel that it brought clutter. But, even with
the stereo, moving CDs around caused some amount of discomfort. Mike
explained that he knew the kids occasionally used the stereo because:

Mike: We’ll flip the CD in [the stereo] and go “uh oh, this must be
someone elses’ ”.

Household members also talked about the importance of having the me-
dia easily available right when needed.

Mike: So that’s nice, you get an immediate resource to something you
are talking about. You know, if you go “oh, let’s go downstairs to look at
the TV,” and sometimes, people when they are tired, they don’t wanna go.
But if you have it right there, you can just pop it up. ... because it was more
convenient. Like I say, if I hadn’t had my laptop there I probably wouldn’t
have.

The timing was a critical aspect of media use because many of the items
were very context-dependent. Piper, Paige, and Phoebe’s discussion of In-
ternet downloads further illustrates this point:

Piper: You know, we’ll pull up stuff. Things from our email we get from
people. [laughs] Oh my gosh. Some really funny stuff. ...

Paige: That’s normally at 2am though, when we’re really tired. [laughs]
Phoebe: Yeah, you think “that’s so funny” but the next day you look at

it and,
Piper: that’s not so funny.
This extra convenience was important enough to both households that

they expressed dismay at having to give up the system at the end of the
study. Mike even asked us to tell him how the stereo system worked, because
he wanted to try to build his own.

Instant data access increased socialization: Interestingly, users re-
ported that having data shared between devices increased the time spent in
public, social places. Because household members felt that they could access



32 · Putting Home Data Management into Perspective

all of their data from the homes’ communal spaces, they were more likely
to spend time in these spaces. In addition, because they considered their
private technology and the shared technology connected, they spent more
time near the shared technology. When asked whether and how the system
had changed her lifestyle, Phoebe replied:

Phoebe: ... I used my computer out [in the living room] more, probably,
than in my room. You know, not at my desk so much. Out in the public area,
just because we had so much out in the public area to use. So... I could sit
there and download something onto the screen, and then everyone could pull
it up, and that kind of thing. Yeah, it centralized things more, so I think we
all spent a little more time there [in the living room], than in the office.

Similarly, we noticed that the printer associated with Carol’s laptop
moved from the Bradys’ downstairs office up to the family room part way
through the study, and the laptop spent more time upstairs.

Discussion: This suggests that it is important for home storage system
designers to make data access easy and immediate when possible. Even small
increases in the amount of effort required to access data in our study led to
a large drop in data usage. Users were enthusiastic about immediate data
access and reported that it led to an increased usage of their data, and an
increase in the amount of time they spent in social places.

3.3 Decentralized and dynamic

Another high-level finding from the study was that the home environment
is quite dynamic. Users would frequently switch between various devices,
often in the course of a single task. Users managed their devices in complex
patterns involving both multiple administrators for each device based on
who was home, and multiple administrative domains, to mitigate faults and
provide autonomy for household members. Even the household membership
itself was often a fluid construct, with a number of even the heavy technology
users in each household not actually living within the home.



3.3 Decentralized and dynamic · 33

3.3.1 Decentralized devices

During the study, household members were regularly choosing what device
to use for a task from a large set of potential devices. In this section, we
discuss the various factors affecting this decision. While the characteristics
of the device itself were important, a variety of social and location factors
were also crucial in making these decisions.

Hardware: One basic reason for data sharing was the difference in ca-
pabilities and interfaces for different devices. For example, the TV has a
much bigger screen than the laptop and, thus, lends itself to showing photos
to large groups of people in a way that the laptop does not.

However, even within the same device type, capabilities varied widely.
For example, the boys in the Brady household played games on Oliver’s
laptop because it was much faster than their desktop machines, which could
not run their games. This was exacerbated by the fact that devices lived for a
long time in both households, both for financial and convenience reasons [26].
For example, the Brady household contained three generations of family
desktops, with the older versions going to each son.

Software: Software also played a large role in differentiating computers.
While in theory software can be moved from device to device, in practicality
this was rarely the case. In many cases, the software was considered an
extension of the hardware of the machine itself. For example, Phoebe would
send some work documents to her home laptop, because it had a more up-
to-date version of Autocad than that on her work machine. While she was
able to eventually convince her boss to upgrade the work version, this was
a long and uncertain process.

Piper did her video editing work on a computer at her parents’ home,
because this machine had Adobe Premier Pro installed, unlike her machine.
Piper still used this computer partially because she had data and programs
on the computer that she didn’t want to take the trouble to move to another
device. Instead, she had been working on convincing her parents to give the
computer to her.

Piper: And so, they might give it to me, because they got a new computer



34 · Putting Home Data Management into Perspective

[crosses fingers and laughs] But then they were saying that we had to clean
it and everything, and I was like, “Nooo, just give it to me,” ’cause I have
SO much stuff on there.

Location: Another differentiator for devices was their location. For ex-
ample, nearby devices were easier to use. Paige and Phoebe both had small
TVs in their rooms, which they used when getting ready in the morning or
while working in their room. However, in general, they watched the much
larger TV in the living room. Similarly, Piper would sometimes check her
email on Phoebe’s laptop, because it was close by in the living room, and
she didn’t have to go to back to her desktop machine in the study.

The atmosphere of the location also influenced these decisions. For ex-
ample, the Bradys were careful to keep the living room TV different from
the downstairs TV, to keep the living room neat. In contrast, they were
happy to have the stereo in the living room, because they did not feel it
brought clutter. Similarly, the office was primarily a work place for Piper,
Paige and Phoebe. So, when someone was working in the office, they would
not disturb them with entertainment.

User assigned function: Members of our households also differenti-
ated otherwise similar devices by assigning particular devices to particular
tasks. For example, Carol’s laptop was purchased specifically for her busi-
ness. While it was used for other purposes as well, all members knew that this
was the device’s primary function. Carol also wanted to purchase another
laptop, to separate the work and personal devices. This finding is consistent
with previous studies that showed that users preferred to use technology
marked as specialized over those marked as general, even if there was no
difference in the technology itself [46].

Household members would often use their personal devices over devices
owned by other users. So, for example, Peter would primarily use his desktop
machine for homework. However, when possible, they sometimes switched
to devices with better capabilities. To continue our previous example, Peter
would switch to Carol’s laptop to print documents, because it was much
faster. In addition, household members would sometimes avoid performing



3.3 Decentralized and dynamic · 35

tasks on certain machines for fear of breaking the device: For example, gam-
ing in the Brady household was not allowed on Carol’s laptop.

Failure: Household members would also use alternative devices when
technical difficulties arose. For example, part way through the study, Piper
had trouble with her computer, so she temporarily used Phoebe’s laptop as
a replacement device until she could get the desktop fixed.

In a different take, when Oliver accidentally broke one of the DVRs while
working with the wiring, Mike used the second (working) DVR as a template
and was able to discover and repair the problem.

Discussion: This suggests that home-focused storage systems must be
flexible enough for users to customize how and when they use the devices
participating in the system. The system should also accommodate the role of
devices changing over time, including for short disruptions due to temporary
circumstances.

3.3.2 Decentralized administration

Administration was a challenge during the study. It took a full day or more
of my time to install the system in each household, even after setting up
several working installations in the lab. Even with a PhD student as a system
administrator, both households ran into challenges in understanding and
keeping the system running.

In the enterprise, administrators are the employees responsible for setting
up and repairing technological devices, and average users do not involve
themselves in these repairs. While not institutionalized, we found similar
distinctions in the home, where some users were administrators and repaired
technology, while others did not.

However, in contrast to the enterprise, we found that each household,
and many devices, had multiple administrators who shared management
tasks in an often ad-hoc fashion. This finding is somewhat at odds with
previous studies who observed a single household “technology czar” [12, 26].
This difference may be due to our focus on non-technical users, where these



36 · Putting Home Data Management into Perspective

previous studies did no such screening. A technical household may be more
likely to have a highly-technical individual to fill this role exclusively.

Multiple administrators: For example, we found that both of our
households had several administrators, despite only having a handful of de-
vices. For example, Piper and Phoebe would work together to figure out
problems, while Paige was not involved and usually only heard about prob-
lems after they were fixed.

Similarly, in the Brady household, Mike, Oliver and Peter all took turns
at working with the technology when challenges arose. Carol and Bobby did
not do administration and instead would call for whichever of the admin-
istrators happened to currently be at home. This meant not only that the
same device might be repaired by multiple administrators, but that previous
repairs might have occurred without the current administrator’s knowledge.

Multiple areas of authority: In addition to having multiple admin-
istrators, each home also had different administrators for different devices.
The public devices were usually managed in combination, but many devices
had private owners and were managed separately. For example, Mike Brady
explicitly gave each son his own computer so that they could play their
games on these devices without breaking the family computer.

Mike: I have lost programs in the past because of a crashed computer so
it’s always a concern. Especially when they get these games going on. That’s
what scares me, these things that they do, you know to performance optimize
the ability of the computer. ... We kinda keep as much separated as possible.

Phoebe explained that this was another reason she password protected
her laptop during college; a fellow student used her laptop for the Internet,
because it was available, and accidentally contaminated the machine with
a virus. Piper even made an administrative division between her C: and D:
drives.

Piper: So, I keep most of the stuff on the D: drive if I know that I don’t
want anyone to access it, cause I have had my C: drive crash before and lost
a lot of stuff that way. So usually when I download I use the C: drive, the D:
drive is never touched by outside sources. So, I never have a problem with
that. That’s usually where I keep my digital photos.



3.3 Decentralized and dynamic · 37

Discussion: The homes in my study contained multiple managers and
multiple administrative domains, even in the context of comparatively small
homes. Many devices were administered by multiple people, at different
times, in loose coordination. My users also made explicit decisions to insulate
the administration of some devices from that of other devices, for both
reliability and autonomy.

3.3.3 Dynamic user base

Household membership was a complex thing in this study. Each household
had members who did not actually live in the home, but were heavy tech-
nology users, and household members who were temporary in various ways.

Occasional household members: In addition to the residents of the
household, each household had instances of occasional household members,
who did not reside in the home but were frequent visitors and users of the
technology in the home.

For example, Piper was still a household member at her parents’ house.
During the study, Piper had trouble with the licensing for a piece of software
on her computer, since she had inherited the computer from her parents but
no longer lived at home. Their discussion reveals the ambiguity in Piper’s
status as a “household member.”

Piper: It was my family’s, ok, I’m still part of my family.
Paige: And that household. [laughs]
Piper: Hey, I still have stuff over there.
Paige: You still have a ROOM, and a spot at the dinner table, I still

think that counts.
Similarly, while Greg and Marcia did not live with the Bradys, they

were frequently in the home and were large users of the Brady’s technology,
including Carol’s laptop. Some of these occasional members were also tem-
porary visitors, such as Carol and Mike’s children who returned and visited
over the holidays.

Temporary household members: In addition to occasional household
members, a number of the households members were also only in the home



38 · Putting Home Data Management into Perspective

temporarily. For example, Oliver was living with the Brady’s but would be
moving out after finishing the year of school. Piper, Paige and Phoebe lived
together, but were unsure of when each of the roommates would move out.

Discussion: Because the user base in a home is so dynamic, it is im-
portant for system designers to make it easy for users to enter and leave
the home, along with their associated devices. Designs that require time-
consuming integration and dissociation processes may be difficult for users
to adopt.

3.4 Privacy

One important task in managing data systems is access control, or control-
ling who can access which files. This is important to provide privacy for
sensitive data and security for important data.

On the first day the system was installed, a lack of adequate access
control caused problems. While each user could choose the privacy of his
local files, music to be shared on other devices had to be shared on all devices.
Peter listened to a variety of music on his desktop machine downstairs. Once
the system was installed, all of this music was accessible from the DVRs and
the stereo upstairs. Mike quickly noticed that this music contained songs
with titles that concerned him, especially songs by several rappers Peter
enjoyed. Mike immediately began deleting these songs, initiating a power
struggle between Mike and Peter. Mike was concerned about the type of
music Peter was listening to and felt an obligation to enforce this rule. Peter
expressed frustration about the event and felt that Mike was unfairly judging
his music.

This problem had been less prevalent before the system. The addition
of data sharing sharing disrupted the previous social balance. When asked
if the system had made this problem worse, Peter said:

Peter: Yeah, kinda, he just went on the TV and just like went through
all the music and just saw what he didn’t want and deleted it. And again on
the stereo, too, cause he didn’t want to see them on the stereo, I guess.



3.4 Privacy · 39

While access control was important in the home, it was also a very
different environment than that found in most enterprises. We discuss these
differences in the next sections.

3.4.1 Users and passwords

Current computer systems, both for the home and enterprise, rely on the
abstraction of a user. Under this abstraction, each household member would
log into the computer with a username and password. In a distributed set-
ting, users carry the same username across devices. This allows users to
sub-divide devices, customize their experience, and control access to im-
portant information. We found that this abstraction was not used in our
households. These findings support findings by Brush et al. [12], who also
observed challenges in the user abstraction for the home.

No user accounts: Neither of our households used the user abstraction
on any of their devices. The Brady desktop, which was primarily used by
Peter, had multiple users defined, but all family members signed on as Mike.
They were surprised to learn (during the course of the study) that there
were other users defined on the machine. All other machines had a single
user defined.

No passwords: Of the eight participants in our study, only Phoebe
used a password on her laptop. When asked why she was concerned about
password protecting her machine, Phoebe explained she has always been a
private person. However, she also revealed that this was a habit she devel-
oped while working in a computer lab setting at school and carried it over
from this environment because she had “got used to it.”

Discussion: This suggests that the use of passwords, while prevalent in
the enterprise, may not be a natural fit for the home environment. In the
remainder of this section, I explore why this may be the case and discuss
alternative methods home users employed to protect their data.



40 · Putting Home Data Management into Perspective

3.4.2 Why is the home different?

Threat model: The biggest difference appears to be in the threat model
assumed in the home. In a business setting, adversaries are assumed to be
malicious, requiring strict mandatory control. However, in our households,
there already existed a high degree of trust between household members,
causing them to take a different approach to access control. While some
households may not have such trust, it is reasonable to assume that a large
number of households will fit the pattern I observed.

Consider Piper’s reply when asked why she was not concerned about her
data on the desktop being unprotected:

Piper: ’Cause I trust [my roommates], I don’t think they’d do that, go
through stuff that was mine that I wouldn’t want them to look at. And even
if they could I doubt they could find anything I don’t want them to see on
there. [laughs] You know, so I don’t really have much to hide. So it doesn’t
really bother me.

This quote hits many of the key points we found in home access control:
When asked about access control, many of the household members gave
similar replies to Piper’s. In general, household members were fine with
their data being accessible to other household members, because they did
not consider their information overly sensitive, and they had a high level
of trust with other household members. While many household members
had certain, specific items that they did not want shared, in general they
defaulted to “all data shared” for most data.

While almost all household members said they had nothing to hide, up
front, most discovered that there was indeed data that they did not want
shared when actually moving data in the system.

For example, Carol initially said she was fine with all the data on her
laptop being shared with all household members. However, as we worked
with Carol to import her data into the system, we ran across a set of journal
entries that she stored on her laptop. She was very uncomfortable with this
data being shared on other machines and made sure to make it private to
the machine. In fact, she was uncomfortable even talking about it with her



3.4 Privacy · 41

husband nearby. Similarly, when questioned more closely about her data,
Piper, who had previously said she was not concerned, confessed she had
private data as well, which she did not put on her desktop machine.

Social pressures: Social pressures also played a very different role in
the home. Especially in the Brady household, where the dynamic of parent
and teenager was important, these effects were nuanced and complex. For
example, when asked if he would allow Peter to have a file space over which
Mike did not have control, Mike was not entirely sure how to answer.

Mike: [long pause] It depends on what files. ... I’d have to go by their
honor in some case or another. ... I’d want them to have some privacy to
writing letters to girlfriends and things like that. ... I’m just more concerned
about the content, like the music. If there was some way of finding things
by content, like some things of a sexual nature, ... I’d probably do that. I
should trust them more but, you always should, but if something came up
that I was concerned about it, I’d want to be able to check it up and discuss
it or something.

Mike was balancing Peter’s need for privacy against his responsibility as
a parent to watch out for him. This policy was nuanced and required great
thought on his part. However, like the other users in the study, he was more
adept at manipulating locations and physical devices than computer-centric
abstractions, like users and permissions, and so used these approaches to
create policy.

3.4.3 Home access control methods

The remainder of this section discusses the alternative way ownership was
handled in our households and the implications for system designers.

Device as security boundary: While users did not utilize passwords
to protect their data, they were skilled at using other techniques to protect
their sensitive information. For example, while Carol was very concerned
about the privacy of her data, she was comfortable with it being stored on
her laptop. Although the laptop belonged to Carol, it was also shared with



42 · Putting Home Data Management into Perspective

a variety of household members, including occasional members like Marcia,
without any kind of password protection.

The device boundary was sufficient for Carol to feel comfortable about
her data. She owned the device and could control who had access to it.
This was the way users in both of our households controlled access to their
data. They were concerned with the devices that had access to the data, but
preferred to control access to these devices using location and control of the
physical device, rather than passwords and users.

Hiding: Much of the access control we observed involved hiding files.
This method relied on the assumption that other users would not, or could
not, find the data stored on their devices. Piper’s previous comment states
that she does not think her roommates can find her documents, later com-
ments about her private data further elaborated:

Piper: Yeah, there are a couple things [I didn’t want people to see]
[laughs] There are some pictures I don’t want people to see.

Interviewer: Would you be comfortable putting them in [the standard
location for her files]?

Piper: [still laughing] Probably not.
Interviewer: So where do you keep those?
Piper: [still laughing] I just keep them on my D: drive. It’s not in [the

standard location for her files] even on my C: drive.
Interviewer: Hidden.
Piper: Very hidden!
This assumption is not always true, of course. For example, Mike ex-

plained how he once caught a file that Peter tried to hide from him:
Mike: All these kids think they’re pretty computer smart. I’m not com-

puter dumb [laughs] and I’ve got enough orneriness into me that I almost
know what these guys do, and so its like he one time hid something under
another file and I found it. “How did you know that?” well I’m not stupid,
I’d probably do that myself.

However, despite his ability to find individual files when looking for them,
Mike did not search through Peter’s desktop. When asked why he deleted
Peter’s music files, which he had not deleted previously, he replied:



3.4 Privacy · 43

Mike: Well, I never had access to ’em, see I wouldn’t know what he was
listening to. ... On a system like this at least I know what they’re listening
to.

This suggests that though he knew that he could search through Peter’s
data, he did not consider doing so an option. Later comments suggest that
he was interested in looking for specific, banned files, but didn’t want to
peruse Peter’s data. This also seems included in the initial quote by Piper
in this section; while she didn’t necessarily think her data would be safe from
a dedicated attacker, she assumed her roommates would not intentionally
search for her private data, much as they would not rummage through her
room for personal items.

Location: Location also had a significant impact on privacy concerns.
For example, during one interview, Phoebe was uncomfortable discussing one
video usage, where she watched a video on a laptop in her room, because
she was watching it with a visitor who had dated Piper.

On the opposite side, Carol explains why Peter’s desktop is in the main
room downstairs and why she doesn’t want to buy him a laptop.

Carol: The boys need a new desktop or laptop downstairs. I’m kinda
having a problem with Peter and games and attitudes. I’m NOT wanting to
buy a laptop. On desktops, he kinda has to sit in the same place [rather than
playing games in another room]. ... We’ve had to do some stuff [to limit his
game playing]. Not that he’s a bad kid, just the addictiveness of it, and the
attitudes that come from it.

Similarly, Peter said he would want his music available on the downstairs
DVR, because it was only used frequently by the kids, but not on the upstairs
DVR or stereo, since this area was primarily used by the parents.

Physical analogues: While device boundaries, hiding and location may
seem weak in contrast to methods used for enterprise access control, they
are analogous to the access control methods found for many other items in
the household already. For example, Carol and Mike separate their movies
into an approved collection, which is stored downstairs next to the TV, and
a restricted collection that they want to control more closely, which is stored
in Mike and Carol’s bedroom. The kids are required to ask permission before



44 · Putting Home Data Management into Perspective

using one of these restricted movies. However, these movies are not locked
away; Mike and Carol rely on a combination of trust that the kids will obey
the rules, and the increased scrutiny that this location provides, to maintain
access control.

Discussion: Our findings suggest that home system designers may want
to support a weaker set of security primitives than might be provided in an
enterprise setting. Just as much of the physical access control in the home is
provided without locks, much of home digital access control appears to be
provided without password protection. The high trust level inside the home
may also suggest a “default to open” policy for sharing, in contrast to the
enterprise.

3.5 Summary

In this section, I summarize the high-level findings from the home server
deployment study.

Instant data access: Even small increases in the amount of effort re-
quired to access data in my study led to a large drop in data usage. Users
were enthusiastic about immediate data access and reported that it led to
an increased usage of their data and an increase in the amount of time they
spent in social places.

Decentralized and Dynamic: The users in my study employed a wide
variety of computers and devices among which they fluidly switched in order
to accomplish their given tasks. While it was not uncommon for them to
have a set of primary devices at any given point in time, the set changed
rapidly, the boundaries between the devices were porous, and different data
was “homed” on different devices with no central server. This matches with
previous studies of data archiving [43]. This was exacerbated by frequent
changes in the users living the household, who moved their devices with
them.

Distributed management: The homes in my study contained multi-
ple managers and multiple administrative domains, even in the context of
comparatively small homes. Many devices were administered by multiple



3.5 Summary · 45

people at different times in loose coordination. My users also made explicit
decisions to insulate the administration of some devices from that of other
devices, for both reliability and autonomy.

Privacy control: Privacy was important to the users in our study, and
a distributed filesystem with conventional access control was not adequate
for their needs. Just as much of the physical access control in the home is
provided without locks, much of home digital access control appears to be
provided without password protection.



46 · Putting Home Data Management into Perspective



4 Home data contextual analysis

4.1 Introduction

I performed a contextual analysis, or set of in-situ, semi-structured interviews
to explore a set of data management tasks. A contextual analysis is an
HCI research technique that provides a wealth of in-situ data, perspectives,
and real-world anecdotes of the use of technology. It consists of interviews
conducted in the context of the environment under study. These interviews
are semi-structured; the interviewer brings questions to begin and guide
discussion, but allows the interview to proceed as it unfolds, to avoid biasing
the results towards a particular set of hypotheses.

I interviewed 8 non-technical households and asked questions about the
way they replicate their data, the way they respond to device failure and
upgrade, and the way they organize their data. This study gave me a deeper
insight into the way these tasks are performed and the challenges associated
with them. I used this information in turn in the Perspective filesystem and
Insight management toolset.

This chapter outlines the study methodology and some high level find-
ings from the study. Section 4.2 outlines the study methodology. Section 4.3
describes the dynamic nature of home devices in the study. Section 4.4 de-
scribes semantic naming and challenges with directory hierarchies. Section
4.5 describes placement policies. Section 4.6 describes the heterogeneity of
policies. Section 4.7 describes the importance of cost. Section 4.8 describes
the importance of control to home users. Section 4.9 summarizes the results.

47



48 · Putting Home Data Management into Perspective

4.2 Study methodology

I interviewed eight households for my study, covering a total of 24 users
(not counting small children), 81 devices, and over 12 hours of video. I
recruited households with three or more members around the Pittsburgh,
PA, and Washington, DC, areas who used a variety of digital information,
such as digitally recorded TV and digital music, but were not computer
professionals. To recruit participants, I used a combination of direct email,
personal contacts, and fliers posted in public locations.

For each household, I conducted an hour-long interview with the mem-
bers as a group in their home with all of their digital storage devices present.
For the first half hour, I asked open-ended questions about data backup, de-
vice failure, and data sharing. For the second half hour, I asked each partic-
ipant to bring forward each of their digital storage devices individually, tell
us the device’s capacity and utilization, look through the data on the device,
and then break down the data stored on that device into classes based on
reliability preference. For each class of data, I asked the participants to tell
us the size of the class and the relative importance of the data not being
lost.

I believe that a study of eight households, 24 users and 81 devices pro-
vides a significant cross section from which I can draw useful insights. Table
4.1 provides some details about the households in the study. Table 4.2 de-
scribes the devices in the study. Studies of similar size are common in the
HCI literature. [12, 48] However, the study is biased towards roommates and
young couples with or without young children. I was unable to recruit fam-
ilies with older children for this particular study. The full list of questions
from the study can be found in Appendix A.

4.3 Decentralized and dynamic

The devices, data organization, and management patterns changed regularly
in the households in study. This section describes my findings about device
dynamism, organizational dynamism, and distributed administration.



4.3 Decentralized and dynamic · 49

Num Adults Children Household type Devices

1 3 0 Graduate student roommates 13
2 3 0 Professional/student roommates 10
3 3 0 Professionals roommates 13
4 2 2 Young family 5
5 4 0 Professional/student roommates 15
6 2 2 Young family 4
7 5 0 Student roommates 10
8 2 1 Young family 3

Table 4.1. Households. This table describes the eight thouseholds in the
study.

Type of device Number

Laptop 15
USB drive 12
Desktop 10
External drive 9
Cell phone 9
Portable music player 9
Web sites 7
CD/DVD 4
PDA 4
DVR 3

Table 4.2. Storage devices. This table describes the types of devices used
in the households interviewed.



50 · Putting Home Data Management into Perspective

4.3.1 Device churn

Our interviews paint a very dynamic picture of the devices in the home.
Users’ devices were constantly changing due to upgrades, changes in em-
ployment, failure, and living conditions. One of our interviewees, Marcy,
had owned 13 different cell phones in the last few years.

For example, 4 of our 24 users were currently or had recently been with-
out a computer for an extended period of time during which they stored data
on friend or family machines, or kept it on CDs or DVDs until getting a new
machine. Another two users were in the process of pulling personal data
from work machines due to a change in employment. Moving data forward
from an old machine was often a difficult task:

Vania: “You format a computer, you have everything fresh and clean and
its easy, and then you start trying to get data back in and it’s a mess.”

The result was a trail of data strewn across old and new devices. Four
users explicitly mentioned data stranded on old devices because of the dif-
ficulty moving it forward. One user even described calling home to ask her
mother to try to access files on an old desktop machine and read the needed
information back to her.

Aaron: “Stranded is a good word for [the data left on my old computers].
An electronic desert island out there. An e-Island.”

Of course some of the data left behind on old devices should be left there;
a device upgrade is an opportunity to clean out stale data [43]. However,
most users did little to ensure the correct data moved forward.

Aaron: “It really has been haphazard what’s made it forward from disks
onto [the new computer.] Not all [of the data made it forward from the last
computer], not even close.”

Restoring information from backups was a similar challenge and also a
pain point. The two users who did mention having to do a restore both
referred to it as a painful experience. One had last dealt with a failure 12
years previously and said, “I still vividly remember the anger”. Another user
was still between computers, but didn’t actually think she could find and
restore all her data once she had a new one. She said:



4.3 Decentralized and dynamic · 51

Figure 4.1. Jill’s backup. This picture shows Jill’s data backup, which she
doubts she will be able to use.

Jill: “I have it somewhere, I can find it again, but it would be a beast

hunting it all down.”
The continual change in devices also tended to sweep aside any configura-

tions that required work to maintain. For example, Kyle set up a networked
drive so that they could access the files on their desktop from the laptop and,
thus, work while keeping track of the kids. However, when they upgraded
the desktop, they lost this feature. Kyle explained:

Kyle: “One of the reasons [the network drive] is now retired is because
I dreaded trying to set it up on the new computer. This may be a very easy
task for someone who is computer savvy, but ’mapping a network drive’,
meaning having a shortcut on my desktop that I could simply drag the files
to, that took me about four hours, and four calls to Bangalore, India.”



52 · Putting Home Data Management into Perspective

4.3.2 Dynamic naming

Another interesting trend I found was the conflation of organization and
other management tasks. Many users stated that they would go through
and organize their data when they needed to move it from device to device,
move data off of an overloaded device, or back data up. This event may serve
as a good cue point for users to clean their file naming [41]. However, we also
observed this trend inhibiting change, as users put off needed management
because they did not have time to reorganize the data. For example, Vania
explained:

Vania: “Most of the time I had a lot of stuff on the laptop that I wanted
to keep. But [now I don’t store any real data here] because I have in the back
of my head, when I have the chance I want to upgrade my laptop, so right
now this is temporary, hopefully.”

This dynamism made static naming and partitioning difficult. For ex-
ample, Vania explained that he had trouble with his naming schemes over
time.

Vania: “Even when you develop a systematic way, you don’t predict some
of the situations you are going to find, and then at some point it doesn’t fit,
and you make changes to your systematic way, or just this once I put it
here, because I don’t really know where to put it, and then the whole thing
crumbles.”

Similarly, Vania complained about the need to set static partitions on
his computer, which quickly drifted out of sync with the needed usage.

Vania: “I reformatted my computer a couple of times. The reason is
mostly because you start, and you create this partition for non-program stuff,
and you end up stuffing C: with a lot of things, and then C: runs out of space
so that D: doesn’t run out of space and then your computer gets slow, and
then you have to reformat.”

4.3.3 Distributed administration

Administrative patterns differed between roommates and young couples. All
of the young couples in the study had a single administrator who coordi-



4.4 Semantic naming and challenges with hierarchies · 53

nated most of the management, while all of the roommates managed their
own devices separately and shared administration of common devices. Un-
fortunately, it is unclear how this applies to families with older children.
The one example in the home server deployment, the Brady household, had
distributed management patterns.

4.4 Semantic naming and challenges with hierarchies

I found that many of our users had difficulty manging the folder structure
of their filesystem. For example, many users found that application-level
attribute naming was difficult to correlate with the folder structure of the
filesystem. In addition, several users found it difficult to manage the different
information they needed within the folder structure.

4.4.1 Semantic applications, files-and-folders filesystems

In our interviews, we found a fundamental disconnect between the way that
users accessed data normally and the way in which they had to manage that
same data. In normal data access, most users utilized semantic abstractions
through applications like music players, frequently accessed files lists, and
desktop search. Most users also used email and online photo sites, and they
expressed little difficulty in navigating these primarily attribute-based sys-
tems.

In contrast, when managing this same data, users were required to use
the filesystem files-and-folder scheme. We found that many users were com-
pletely unaware of the files-and-folder scheme that existed on their com-
puters, since it was almost always hidden by applications. Of 24 users we
interviewed, we found that at least 7 of them did not know how to use the
file browser. Many users told us things like, “I don’t know where my music
is stored, I just access it through iTunes.”

Even experienced users had trouble with the disconnect between applica-
tion data access and the filesystem structure. Kyle described that the most
frequent use of his backup drive was actually to find files that were lost on
his computer hard drive. He explained:



54 · Putting Home Data Management into Perspective

Kyle: “I understand my backup drive because everything goes exactly
where I put it. But, on my hard drive, every piece of software has some-
place it downloads stuff, and towards the end of your computer’s lifetime,
you have so much junk installed, you don’t know where you set it to down-
load to. So, you go back to an application and you download something, and
you don’t know where it goes.”

4.4.2 Challenges with files-and-folders

In addition to the mismatch between semantic applications and files-and-
folders filesystem structure, users had other problems with the folder struc-
ture of the filesystem. While these challenges may be mitigated by the use of
attribute-based naming, they do not exactly match attribute-based naming.

Many users had trouble finding files after saving them. For example,
Marcy, a less experienced user, explained that she couldn’t seem to find files
once she had saved them, because she often wasn’t sure where they went.

Marcy: “It reminds me of those drop down files, it goes C: Drive and
then My Desktop, or My Computer, and then you save the file there, and
then you can’t find it again. And sometimes you can recover it by search,
but I’ve definitely lost files on the computer.”

Aaron’s analysis of his wife’s challenge in organizing data more succinctly
describes the problem many users had with organization. They were careful
about the name of files that they saved, but had much more trouble with
the path where they saved the file.

Aaron: “I think you are fairly concerned about how you name your doc-
uments, but you don’t pay much attention to where you save it.”

Even users who were very attentive to organization struggled with the
folder structure of their data. One user described his challenge in integrating
different ways of organizing the same data:

Vania: “For example, we started by organizing photos by trips, but then
we started just having photos for Brianna, then we do a trip and take pictures
of Brianna. And then in Brianna you can’t put photos randomly, so you start



4.5 Explicit, infrequent data placement · 55

organizing them by date. So now you have three ways of labeling the data
that are intertwining.”

This multiple-attribute problem was exacerbated by the fact that naming
structures had to be useful for multiple purposes. We found that most users
utilized backup and mobility policies that ran counter to the attributes used
in their normal data access methods. By forcing them to use a single set
of attributes, the hierarchies made both tasks more complex. For example,
many used time to differentiate their data, putting old files on secondary
machines and recent files on active ones. Users also utilized distinctions by
task or period in the user’s life (e.g., files from college or a particular project)
or type (e.g., raw movie files vs. processed videos) to manage capacity.

Aaron expressed his frustration at having to dilute his carefully chosen
file names by splitting his files up between various devices due to space
constraints.

Aaron: “I’m very conscious about the way I name things; I have a coding
system. But the thing is, that doesn’t work if you have everything spread out.
The coding system makes sense when there’s a lot of other things around,
but not when it’s by itself.”

A number of users indicated that the data they stored would not fit in its
entirety on their portable devices, and they had difficulty carving off subsets
to place on these devices. Vania described his frustration about his photos:

Vania: “At some point we just know this partition is photos and we
back the whole thing up [and don’t try to divide it], but it virtually becomes
impossible to load it up on my laptop, because it doesn’t have enough space.”

4.5 Explicit, infrequent data placement

Home users carry a plethora of devices with them outside the home. All of
the users we interviewed had cell phones, and most had music players that
they carried outside of the home. A majority (13 out of 24) of the users
interviewed also had computers that they frequently used outside of the
home. It is critical that users be able to access their data on these portable
devices.



56 · Putting Home Data Management into Perspective

While network access is frequently available, firewalls, corporate security
policies and other barriers often make it difficult to connect to home devices
from remote locations. For example, Kyle had to email data to himself from
work and home, because his work firewall kept him from even checking
his home mail, let alone connecting over the WAN. We believe that these
observations argue for a decentralized storage solution that supports discon-
nection between devices, to allow users to carry data stored on devices from
place to place, without requiring network access.

We observed that only 2 of 24 users had devices on which they regu-
larly placed data in anticipation of needs in the near future. Instead, most
users decided on a type of data that belonged on device (i.e. all my music,
files for this semester), and only occasionally revisited these decisions when
prompted by environmental changes. More frequent update operations usu-
ally involved copying all new files matching the device data criteria onto
each device.

4.6 Heterogeneous policy

A one-size-fits-all approach for data placement would not be sufficient for
the 24 users interviewed, as different users had very different opinions about
mobility and reliability policies.

For example, some users kept most of their data on their laptop, while
others kept recent documents on their laptop and older files on an external
hard drive. Some households consolidated most of their data into a single
grouping, while others kept their data separate between users.

Reliability concerns also varied between household. For example, while
many users cared little about losing recorded TV shows, one household listed
this data as some of the most important in the house — more important
than any of their documents, and more important to one user than her
photos. They were avid TV watchers, and during the regular TV season this
loss would mean missing a show and having no way to catch up. When, a
year earlier, their DVR had cut off the end of “American Idol” before the
final decision, the experience was traumatic enough to warrant a heartfelt



4.7 Money matters · 57

Attributes Example Count

User/Type Sara’s pictures 63
Task Andy’s coursework 42
Type Music 20
User Vania’s files 16
User/type/ad-hoc subset Some of Tracy’s documents 16
User/time Jessie’s old files 2
User/type/time Rebecca’s old documents 1
Task/time Andy’s recent teaching files 1

Table 4.3. Data division attributes. This table shows the frequency with
which users in our contextual analysis used each attribute to define a set of
their data.

mention during the interview. Another user in another household said that
the data she missed most from a previous failure was the music she had
purchased. This is in contrast to other users, who cared little for music or
other media, but were vitally concerned about photos.

Mary: “The phone numbers are the worst. It’s so embarrassing when
someone calls and says ‘Hey!’ and you’re like ’Hey?’ and they’re like ’What
are you doing tonight?’ and you’re like ’Who are you?’ ”

Table 4.3 shows the various attributes that users utilized to sort their
data. User and type together are the dominant attributes, but this may also
be influenced by the fact that most OSes automatically choose this grouping
by default.

Table 4.4 shows the percentage of data that each user wanted to protect
from failure and how much they would care if the data went away. I was
surprised at how much of their data users said they cared deeply about,
although their replies are not tempered by any cost.

4.7 Money matters

Vania: “Yeah, we’ve been short on space on pretty much everything. We had
like 150GB initially, we ran out of space, we bought 250GB, we ran out of



58 · Putting Home Data Management into Perspective

Reliability class Percent of data

5 - Disastrous 53%
4 - Big loss, couldn’t or couldn’t want to replace 13%
3 - Considerable loss of time or money 17%
2 - Annoyance 8%
1 - Don’t care 8%

Table 4.4. Data reliability. This table shows how much users would care
if data was lost.

space again. Then we bought a 500GB external drive recently, now 350GB
are taken.”

With the increase in digital photography and video, and the crossover
between home and work environments, it is common that users have data
stored on home devices they are unwilling to lose. However, we found that
users were loathe to spend money on more capacity than was needed and
often explicitly chose to complicate their backup strategy to save money.
During our interviews, 6 of our 24 interviewees explicitly mentioned cost
as a reason they adopted more cumbersome data management strategies.
Aaron summarized this point well:

Aaron: “I can’t be as organized as I’d like because I have no central place
to back up stuff. ... [but] if it’s a choice between shoes [for the kids] and a
nice external hard drive, then it will be the shoes.”

Aaron: “I imagine it isn’t too expensive to buy a large drive these days,
but you know, too expensive is relative.”

Even when resources were not as tight, users did not want to spend
money on extra capacity if not needed. Sally explained:

Sally: “I don’t have the money [for an external hard drive]. That’s money
I’d rather use to go to Spain.”

The inverse of cost sensitivity is a drive to fully utilize the devices that
users already owned.

Vania: “I don’t like the idea of having an extra drive being just used to
backup. It seems like a waste of space.”



4.8 Need to feel in control · 59

These concerns about cost suggest that uniformly backing up all of the
data in a home will not be acceptable to many users. Cost will increase as a
concern as more media (TV shows, movies, etc.) become prevalent in digital
form. We found that media-heavy users especially needed to differentiate
between data types. Even Kyle, who was very concerned with reliability
and backed up the family data regularly on DVDs stored in a safe deposit
box at the bank, was unwilling to back up all their data and had a separate
policy for raw video footage and finished items to save space and time.

This cost-sensitivity leads to a number of users running short on space.
We found that many users (11 of 24) had run out of space at some point.
A number of these users (5 of 24) were heavy media users, either in video
or audio. However, even average users spoke of running short on space and
having to remove data or buy new capacity.

4.8 Need to feel in control

Cost concerns notwithstanding, over half of users (14 of 24) did use some sort
of backup to protect their data. However, many users expressed a distaste for
spending time on these tasks and had sporadic backup strategies. Despite the
distaste for spending time on managing reliability, very few used automated
backup tools (2 of 14 users), which many participants described as being too
complex for their needs and difficult to understand. Instead, most users who
backed up their data (12 of 14) copied data by hand from device to device.
Ramona summarized the sentiment we heard from several users:

Ramona: “I don’t know that I necessarily trust those programs that back
up your information because I feel like I know what I want, and I don’t know
what that’s doing. I don’t necessarily know that it’s getting everything that
I need, or that it’s not duplicating the information that I already have.”

The fact that users crave visibility into what their tools are doing on
their behalf is a particularly powerful insight. We found that users want to
understand what is being done on their behalf and are very distrustful of
tools that completely hide complexity, unless they are extremely confident
that the tool does what they expect.



60 · Putting Home Data Management into Perspective

Condition Users Total users

Adopted harder management method to reduce cost 6 24
Without a primary storage device within last year 4 24
Did not know how to use the file browser 7 24
Regularly used computers outside of their home 13 24
Anticipated future usage and used to “cache” files on devices 2 13
Has run out of space 11 24
Backs up data in some way 14 24
Uses some sort of backup tool 2 24
Hand copies data between devices 12 24
Uses email for backup of some items 5 24

Table 4.5. Interesting statistics. This table shows a summary of inter-
esting statistics from the study.

In contrast, we found that 9 of 24 users used the technique of emailing
copies of important documents to themselves as a crude means of backup
and synchronization for small files.

Other users relied on external vendors to restore data from crashed com-
puters, turning machines in to computer stores for restoration or moving old
data over to new machines. However, several users mentioned losing data in
these exchanges, even with routine problems. Of those users who used out-
side vendors, most of them had unpleasant stories about the experience,
citing either perceived ineptitude or a frightening loss of control over their
information.

Janna: “I felt like [the store that restored data from my crashed laptop]
totally took advantage of me at the most vulnerable time of my life. I wish
I had more control over what happened to me. It was as if I am putting
everything I have: things that cost money, or make money for other people,
in their hands, and they’re not taking my time seriously.”

4.9 Summary of results

This section summarizes the key findings from the study. Table 4.5 also
shows a summary of key interesting numbers from the study.

Decentralized and Dynamic: The users in my study employed a wide
variety of computers and devices between which they fluidly switched in



4.9 Summary of results · 61

order to accomplish their given tasks. While it was not uncommon for them
to have a set of primary devices at any given point in time, the set changed
frequently, the boundaries between the devices were porous, and different
data was “homed” on different devices with no central server. This was
exacerbated by regular changes in the users living the household, and the
devices they used. This matches with previous studies of data archiving [43].
One household had set up a home server, at one point, but did not re-
establish it when they upgraded the machine due to setup complexity.

Heterogeneous policy: The users in the study had a variety of storage
policies. While there were common approaches and themes, no set policy
would accommodate all of their needs. Policies varied both for mobility
concerns and reliability concerns.

Money matters: While the cost of storage continues to decrease, my
interviews showed that cost remains a critical concern for home users. Note
that my studies were conducted well before the Fall 2008 economic crisis.
While the same is true of enterprises, home storage rarely has a clear “return
on investment,” and the cost is instead balanced against other needs (e.g.,
new shoes for the kids) or other forms of enjoyment. Thus, users replicate
selectively, and many adopted cumbersome data management strategies to
save money.

Semantic naming: Most users navigated their data via attribute-based
naming schemes provided by their applications, such as iPhoto, iTunes, and
the like. Of course, these applications stored the content into files in the un-
derlying hierarchical file system, but users rarely knew where. This discon-
nect created problems when they needed to make manual copies or configure
backup/synchronization tools.

Need to feel in control: Many approaches to manageability in the
home tout automation as the answer. While automation is needed, the users
expressed a need to understand and sometimes control the decisions being
made. For example, only 2 of the 14 users who backed up data used backup
tools. The most commonly cited reason was that they did not understand
what the tool was doing and, thus, found it more difficult to use the tool
than to do the task by hand. This suggests that automation techniques must



62 · Putting Home Data Management into Perspective

be careful about hiding complexity, unless they can convince the user that
they will do the right thing in all cases.

Infrequent, explicit data placement: Only 2 of 24 users had devices
on which they regularly placed data in anticipation of needs in the near fu-
ture. Instead, most users decided on a type of data that belonged on a device
(e.g., “all my music” or “files for this semester”) and rarely revisited these
decisions, usually only when prompted by environmental changes. Many did
regularly copy new files matching each device’s data criteria onto it.



5 View-based architecture

5.1 Storage for the home

The home is different from an enterprise. Most notably, there are no
sysadmins—household members generally deal with administration (or
don’t) themselves. The users also interact with their home storage differently,
since most of it is for convenience and enjoyment rather than employment.
However, much of the data stored in home systems, such as family photos, is
both important and irreplaceable, so home storage systems want high levels
of reliability in spite of lax management practices. Not surprisingly, I believe
that home storage’s unique requirements would be best served by a design
different than enterprise storage. This section outlines insights gained from
the previous studies in real homes, design features suggested by them, and
an overview of a view-based filesystem architecture that provides the design
features suggested by my studies.

5.1.1 What users want

This section summarizes major findings from the studies described in the
previous two chapters.

Instant data access: Even small increases in the amount of effort re-
quired to access data in my study led to a large drop in data usage. Users
were enthusiastic about immediate data access and reported that it led to
an increased usage of their data and an increase in the amount of time they
spent in social places.

63



64 · Putting Home Data Management into Perspective

Decentralized and Dynamic: The users in my studies employed a
wide variety of computers and devices between which they fluidly switched
in order to accomplish their given tasks. While it was not uncommon for
them to have a set of primary devices at any given point in time, the set
changed frequently, the boundaries between the devices were porous, and
different data was “homed” on different devices with no central server. This
was exacerbated by regular changes in the users living the household, and the
devices they used. This matches with previous studies of data archiving [43].
One household had set up a home server, at one point, but did not re-
establish it when they upgraded the machine due to setup complexity.

Money matters: While the cost of storage continues to decrease, our
interviews showed that cost remains a critical concern for home users. Note
that our studies were conducted well before the Fall 2008 economic crisis.
While the same is true of enterprises, home storage rarely has a clear “return
on investment,” and the cost is instead balanced against other needs (e.g.,
new shoes for the kids) or other forms of enjoyment. Thus, users replicate
selectively, and many adopted cumbersome data management strategies to
save money.

Semantic naming: Most users navigated their data via attribute-based
naming schemes provided by their applications, such as iPhoto, iTunes, and
the like. Of course, these applications stored the content into files in the un-
derlying hierarchical file system, but users rarely knew where. This discon-
nect created problems when they needed to make manual copies or configure
backup/synchronization tools.

Need to feel in control: Many approaches to manageability in the
home tout automation as the answer. While automation is needed, the users
expressed a need to understand and sometimes control the decisions being
made. For example, only 2 of the 14 users who backed up data used backup
tools. The most commonly cited reason was that they did not understand
what the tool was doing and, thus, found it more difficult to use the tool
than to do the task by hand.

Infrequent, explicit data placement: Only 2 of 24 users had devices
on which they regularly placed data in anticipation of needs in the near fu-



5.1 Storage for the home · 65

ture. Instead, most users decided on a type of data that belonged on a device
(e.g., “all my music” or “files for this semester”) and rarely revisited these
decisions, usually only when prompted by environmental changes. Many did
regularly copy new files matching each device’s data criteria onto it.

Distributed management: The homes in my studies contained mul-
tiple managers and multiple administrative domains, even in the context
of comparatively small homes. Many devices were administered by multiple
people at different times in loose coordination. My users also made explicit
decisions to insulate the administration of some devices from that of other
devices, for both reliability and autonomy.

Privacy control: Privacy was important to the users in my study, and
a distributed filesystem with conventional access control was not adequate
for their needs. Just as much of the physical access control in the home is
provided without locks, much of home digital access control appears to be
provided without password protection.

5.1.2 Designing home storage

From the insights above, I extract guidance that has informed my home
filesystem design.

Global namespace: Because immediate data access is so important,
a home filesystem should provide a global namespace. A global namespace
allows data stored on any device in the home to be accessible from any other
device in the home.

Peer-to-peer architecture: While centralization can be appealing
from a system simplicity standpoint, and has been a key feature in many
distributed filesystems, it seems to be a non-starter with home users. Not
only do many users struggle with the concept of managing a central server,
many will be unwilling to invest the money necessary to build a server with
sufficient capacity and reliability. I believe that a decentralized, peer-to-peer
architecture more cleanly matches the realities I encountered in my studies.

Single class of replicas: Many previous systems have differentiated
between two classes: permanent replicas stored on server devices and tem-



66 · Putting Home Data Management into Perspective

porarily replicas stored on client devices (e.g., to support mobility) [67, 52].
While this distinction can simplify system design, it introduces extra com-
plexity for users and prevents users from utilizing the capacity on client
devices for reliability, which can be important for cost-conscious home con-
sumers. Having only a single replica class removes the client-server distinc-
tion from the user’s perception and allows all peers to contribute capacity
to reliability.

Semantic naming for management: Using the same type of naming
for both data access and management should be much easier for users who
serve as their own administrators. Since home storage users have chosen
semantic interfaces for data navigation, replica management tools should be
adapted accordingly—users should be able to specify replica management
policies applied to sets of files identified by semantic naming.

In theory, applications could limit the mismatch by aligning the underly-
ing hierarchy to the application representation. But, this alternative seems
untenable, in practice. It would limit the number of attributes that could
be handled, lock the data into a representation for a particular application,
and force the user to sort data in the way the application desires. Worse, for
data shared across applications, vendors would have to agree on a common
underlying namespace organization.

Rule-based data placement: Users want to be able to specify file types
(e.g., “Jerry’s music files”) that should be stored on particular devices. The
system should allow such rules to be expressed by users and enforced by the
system as new files are created. In addition to helping users to get the right
data onto the right devices, such support will help users to express specific
replication rules at the right granularity, to balance their reliability and cost
goals.

Transparent automation: Automation can simplify storage manage-
ment, but many home users (like enterprise sysadmins) insist on under-
standing and being able to affect the decisions made. By having automation
tools use the same flexible semantic naming schemes as users do normally, it
should be possible to create interfaces that express human-readable policy
descriptions and allow users to understand automated decisions.



5.2 View-based architecture · 67

Alice cell Bob laptop Desktop DVR

(type = calendar
or type = address)
and owner = Alice

owner = Bob everything type = movie

Figure 5.1. An example set of devices and associated views. This
diagram, shows four devices, each with a customized view. Alice’s cell phone
is only interested in “calendar” and “address” objects belonging to Alice,
Bob’s laptop is interested in all objects owned by Bob, the house desktop is
interested in all data, and the DVR is interested in all “movie” objects.

5.2 View-based architecture

To provide the design features from Section 5.1.2, I present a view-based
filesystem architecture. It is decentralized, enables any device to store and
access any data, and allows decisions about what is stored where to be
expressed or viewed semantically.

A view-based filesystem provides flexible and comprehensible file organi-
zation through the use of views. A view is a concise description of the data
stored on a given device. Each view describes a particular set of data, defined
by a semantic query, and a device on which the data is stored. A view-based
replica management system guarantees that any object that matches the
view query will eventually be stored on the device named in the view. Fig-
ure 5.1 shows an example set of views. Example views include “all files where
artist=’Aerosmith’ and household=’Smith”’ stored on the Desktop , and “all
files where owner=’Brandon’ and type=’Contact’ and household=’Smith’”
stored on Brandon’s cell phone, and “all files where time created < Dec 2,
2007 and household=’Smith”’ stored on external hard drive. I will describe
the prototype’s query language in detail in Section 6.1.1.

Figure 5.2 illustrates a combination of management tools and storage
infrastructure that I envision, with views serving as the connection between
the two layers. Users can set policies through management tools, such as
those described in Chapter 7, from any device in the system at any time.
Tools implement these changes by manipulating views, and the underlying



68 · Putting Home Data Management into Perspective

Views

Infrastructure
  (Perspective)

Management tools

Eric’s files (12000)

▼ All files (10000)

FILES

S
E

CI
V

E
D

▼
secived ll

A
esuoh no

mla
S

p otpal no dnar
B

R
V

D yli
maF

 potpal cir
E

po tksed  y li
maF

pot ksed nodnar
B

►
esu oh s’a

md nar
G

Brandon’s files (10000)

Movies (50)

Family photos (300 )

TV shows (25)

All files stored

No files stored

Some files stored

▼

ytiliba ile
R

potpal yli
maF

Created before 5/15 (9000)

Created on/after 5/15 (1000)

Lo

Md

Md

Lo

Lo

Hi
Md

Hi

x - +

Eric’s files (12000)

▼ All files (10000)

FILES

S
E

CI
V

E
D

▼
secived ll

A
esuoh no

mla
S

potpal nodnar
B

R
V

D yli
maF

 potpal cir
E

po tksed  y li
maF

potksed nodnar
B

►
esuoh s’a

mdnar
G

Brandon’s files (10000)

Movies (50)

Family photos (300 )

TV shows (25)

All files stored

No files stored

Some files stored

▼

ytilibaile
R

potpal yli
m aF

Created before 5/15 (9000)

Created on/after 5/15 (1000)

Lo

Md

Md

Lo

Lo

Hi
Md

Hi

x - +

Alice cell
(type = calendar or
type = address)
and owner = Alice

Desktop
everything

DVR
type = movie owner = Bob

Bob laptop

Figure 5.2. View-based architecture. Views are the interface between
management tools and the underlying heterogeneous, disconnected infras-
tructure. By manipulating the views, management tools can specify data
policies that are then enforced by the infrastructure.

infrastructure in turn enforces those policies by keeping files in sync among
the devices according to the views. Views provide a clear division point
between tools that allow users to manage data replicas and the underlying
infrastructure that implements the policies.

View-based management enables the design points outlined in Sec-
tion 5.1.2. Views provide primitive that allows users to specify meaningful
rule-based placement policies. Because views are semantic, they unify the
naming used for data access and data management. Views are also defined
in a human-understandable fashion, providing a basis for transparent au-
tomation. A view-based system provides data reliability using views without
restricting their flexibility, allowing it to use a single replica class.

5.2.1 Placing file replicas

In a view-based filesystem, the views specify the distribution of data among
the devices in the system. When a file is created or updated, Perspective
checks the attributes of the file against the current list of views in the system
and sends an update message to each device with a view that contains that



5.2 View-based architecture · 69

file. Each device can then independently determine if and when to pull a
copy of the update.

When a device, A, receives an update message from another device, B,
it checks that the updated file does, indeed, match one or more views that
A has registered. If the file does match, then A applies the update from B.
If there is no match, which can occur if the attributes of a file are updated
such that it is no longer covered by a view, then A ensures that there is no
replica of the file stored locally.

This simple protocol automatically places new files and also keeps current
files up to date according to the current views in the system. Simple rules
described in Section 6.3 assure that files are never dropped due to view
changes.

Each device is represented by a file in the filesystem that describes the
device and its characteristics. Views themselves are also represented by files.
Each device registers a view for all device and view files to ensure they are
replicated on all participating devices. This allows applications to manage
views through the standard filesystem interfaces, even if not all devices are
currently connected. Note that this assumes that the number of views con-
tained on the devices in each household and each device ensemble is relatively
small (in the hundreds). This assumption is valid for the home, but might
not be in the other settings.

5.2.2 View-based data management

This subsection presents three scenarios to illustrate view-based manage-
ment.

Traveling: Harry is visiting Sally at her house and would like to play
a new U2 album for her, while he is at her house. Before leaving, he checks
the views defined on his wireless music player and notices that the songs are
not stored on the device, though he can play them from his laptop where
they are currently stored. He asks the music player to pull a copy of all U2
songs, which the player does by creating a new view for this data. When the



70 · Putting Home Data Management into Perspective

synchronization is complete, the filesystem marks the view as complete, and
the music player informs Harry.

He takes the music player over to Sally’s house. Because the views on
his music player are defined only for his household and the views on Sally’s
devices for her household, no files are synchronized. But, queries for “all
music” initiated from Sally’s digital stereo can see the music files on Harry’s
music player, so they can listen to the new U2 album off of Harry’s music
player on the nice stereo speakers, while he is visiting.

Crash: Shawn’s young nephew Gus accidentally pushes the family desk-
top off of the desk onto the floor and breaks it. Shawn and his wife Juliet
have each configured the system to store their files both on their respective
laptop and on the desktop, so their data is safe. When they set up the re-
placement computer, a setup tool pulls the device objects and views from
other household devices. The setup tool gives them the option to replace an
old device with this computer, and they choose the old desktop from the list
of devices. The tool then creates views on the device that match the views
on the old desktop and deletes the device object for the old computer. The
data from Shawn and Juliet’s laptops is transferred to the new desktop in
the background over the weekend.

Short on space: Marge is working on a project for work on her laptop
in the house. While she is working, a capacity automation tool on her laptop
alerts her that the laptop is short on space. It recommends that files created
over two years ago be moved to the family desktop, which has spare space.
Marge, who is busy with her project, decides to allow the capacity tool to
make the change. She later decides to keep her older files on the external
hard drive instead and makes the change using a view-editing interface on
the desktop.



6 Perspective: view-based filesystem

This section describes Perspective, a view-based filesystem that provides
view-based replica management without requiring centralization. Our stud-
ies suggest that centralized approaches are a poor fit for the home environ-
ment, where the devices sets change regularly. This section describes the
high level design of Perspective and the changes to core filesystem functions
involved in supporting the more flexible view-based location scheme.

6.1 Search and naming

All naming in Perspective uses semantic metadata. Therefore, search is a
very common operation both for users and for many system operations.
Metadata queries (i.e. searches) can be made from any device, and Perspec-
tive will return references to all matching files on devices currently accessible
(e.g., on the local subnet), which we will call the current device ensemble [68].
Views allow Perspective to route queries to devices containing all needed files
and, when other devices suffice, avoid sending queries to power-limited de-
vices. While specialized applications may use the Perspective API directly,
we expect most applications to access files through the standard VFS layer,
just as they access other filesystems. Perspective provides this access using
frontends that support a variety of user-facing naming schemes. These fron-
tends convert their lookups to Perspective searches. Our current prototype
system implements four frontends that each support a different organiza-
tion: directory hierarchies, faceted metadata, simple search, and hierarchies
synthesized from the values of specific tags.

71



72 · Putting Home Data Management into Perspective

This section describes the Perspective query language, device ensemble
creation, query routing, query caching, and frontends.

6.1.1 Query language and operations

Perspective uses a query language that includes logic for comparing at-
tributes to literal values with equality, standard mathematical operators,
string search, and an operator to determine if a document contains a given
attribute. Clauses can be combined with the logical operators and, or, and
not. Each attribute is allowed to have only a single value, but multi-value at-
tributes can be expressed in terms of single value attributes, if necessary. We
require all comparisons to be between attribute values and constant values.

While I could allow any attribute to have multiple values, allowing only
a single value can be exploited to improve overlap computation. For this
reason, I chose to support single value attributes as the core attribute.

However, attributes with multiple values can be implemented by over-
loading attribute names. For example, to create a keyword tag for a file
with multiple values, we put a number of name-value pairs into a tag name.
For example, to create a multiple-value tag with the name “keyword” and
the value “Tree”, the system can create the tag: “keywordTree=1”. This
conversion could be done at the system level by marking certain attributes
as “multi-value” and then converting these attributes internally to multi-
ple attributes of this form. Perspective relies on the application to do the
conversion, as needed.

In addition to standard queries, we support two operations needed for
efficient naming and reliability analysis. The first is the enumerate values
query, which returns all values of an attribute found in files matching a given
query. The second is the enumerate attributes query, which returns all the
unique attributes found in files matching a given query. These operations
must be efficient. Fortunately, we can support them at the database level
using indices, which negate the need for full enumeration of the files matching
the query.



6.1 Search and naming · 73

Rule Description
Query:- object[Stmt] Returns all the object matching the statement.

object[Stmt]:Attribute Returns all the values of attribute for objects
matching the statement.

object[Stmt]:* Returns all the unique attributes for objects
matching the statement.

exists[Stmt] Returns a single object if some object
matches the Stmt.

Stmt:- (Stmt) True if statement is true
Stmt and Stmt True if both statements are true
Stmt or Stmt True if either statement is true
not Stmt True if statement is false
Clause True if the clause is true

Clause:- Attribute=Value True if named attribute equals value
Attribute!=Value True if named attribute not equal to value
Attribute<Value True if named attribute less than value
Attribute<=Value True if named attribute less than or equal to value
Attribute>Value True if named attribute greater than value
Attribute>=Value True if named attribute greater than or equal to value
Attribute contains Value True if named attribute contains string value
Attribute True if object contains the named attribute.

Attribute:- string (with no spaces or /) Name of an attribute.
Value:- ’string’

string (with no spaces) Value strings without spaces can drop the quotes.

Table 6.1. Perspective query language. This table describes the Per-
spective query language in detail.



74 · Putting Home Data Management into Perspective

Query Description

/object[type=’Music’ and artist=’U2’] Find all files that have the type “Music” and the artist “U2”.
/object[type=’Picture’]:album Find all values of album for files with type “Picture”.
/object[owner=’Bob’]:* Find all the attributes found in files with owner “Bob”.
/object[not(favorite)] Find all files without a tag called favorite.

Table 6.2. Perspective query examples. This table shows several exam-
ple queries in the Perspective query language.

This language is expressive enough to capture many common data orga-
nization schemes (e.g., directories, unions [56], faceted metadata [84], and
keyword search) but is still simple enough to allow Perspective to efficiently
reason about the overlap of queries. Perspective can support any of the
replica management functions described in my dissertation for any naming
scheme that can be converted into this language. Table 6.1 shows a full
description of Perspective’s query language, and Table 6.2 shows example
queries.

Query comparison: Overlap evaluation is commonly used to compare
two queries. The comparison of q1 and q2 returns one of three values. The
comparison of q1 and q2 returns subsumes, if the system can determine that
all the files matching q2 also match q1. The comparison of q1 and q2 returns
no-overlap, if the system can determine that none of the files that match
q1 match q2. The comparison of q1 and q2 returns unknown, if the system
cannot determine the relationship between these two queries. Note that the
comparison operator is used for efficiency but not for correctness, allowing
for a trade-off between language complexity and efficiency.

For example, Perspective can determine that the query all files where
date < January, 2008 is subsumed by the query all files where date < June,
2008, and that the query all files where owner=Brandon does not overlap
with the query all files where owner=Greg. However, it cannot determine
the relationship between the queries all files where type=Music and all files
where album=The Joshua Tree. Perspective will correctly handle operations
on the latter two queries, but possibly at some cost in efficiency.



6.1 Search and naming · 75

6.1.2 Device detection

Perspective queries find all files matching the query on any devices in the
current device ensemble. A device ensemble is a group of devices that com-
municate with one other to share data [68]. For example, in the home, com-
puters, digital video recorders, and devices from visitors will share data.
Alternately, a family on a road trip may have laptops and music players
share data.

Both of these cases are considered ensembles and are handled the same
way in Perspective. Views allow Perspective to automatically adjust to the
types of devices found in the ensemble, whether they are capable devices
found in the home or an ad-hoc collection of devices outside the home.

Perspective uses Bonjour [10] and Avahi [5] to detect devices that arrive
and leave the ensemble, in addition to using it to find IP addresses. Each
device publishes itself as an instance of a Perspective service using Bonjour,
with the device ID used as the name for the instance. However, an industrial
research group has also easily ported Perspective to work with UPnP [77] as
well. The data on a device is available from all other devices in the ensemble
as soon as it has synchronized the view and device objects.

6.1.3 Routing queries

Because search is the core of all naming operations in Perspective, it is
important to make it efficient. Rich metadata provides a great deal of useful
content for search, and views can enable some useful optimizations.

By comparing a search query to the views in the system, the system
can exclude devices that could not store the desired data. For example, the
search for calendar data illustrated in Figure 6.1 is posed from the laptop.
Using the views in the system, Perspective is able to exclude the DVR from
the search, since calendar entries do not match its view.

Complete views can simplify the search process even further. Because a
device with a complete view is guaranteed to store all objects that match
that view, if a complete view subsumes the search, the device only needs
to forward the search to the corresponding device. If the Desktop had a



76 · Putting Home Data Management into Perspective

Alice cell

Bob laptop

DesktopDVR

(type = calendar
or type = address)
and owner = Alice

owner = Bob

everythingtype = movie

Figure 6.1. Search. Views can improve search efficiency. In this example,
Bob’s laptop performs a query for calendar entries for today. Because the
laptop has a copy of all views in the system, it knows which devices could
hold an object of that description. In this case, this would be both the
desktop and the cell phone. However, if the desktop provided a complete
view, then the laptop would only need to query the desktop, and not the
cell phone.

complete view on “everything”, the example search in Figure 6.1 could be
executed just on the desktop machine and would not have to be propagated
to the cell phone.

Efficient decentralized search is especially useful when dealing with de-
vices from multiple administrative domains. One challenge in sharing data
between domains is that they do not collaborate on name spaces, making
it difficult to find data. However, by decentralizing the search process and
using a semantic model, a device can see data on a device from another
domain in exactly the same way it sees data from a local domain. It is free
to do access control as it sees fit, and “domain” could be one part of the
metadata.

6.1.4 Caching queries

To make search efficient, it is also important to be able to cache queries
to avoid performing redundant queries multiple times. Perspective uses a
lookup cache that maps the text of a query to a list of the metadata objects
for matching files. If the same query is performed again, Perspective will use
the result from the cache rather than actually re-performing the query.



6.1 Search and naming · 77

The lookup cache is a write-through cache, all local updates are applied
to the cache and then also applied to the backing store. If one of the views on
the local device subsumes the query, then all required updates from remote
devices will be forwarded to this device. If not, Perspective will mark the
query as temporary, and will redo the query after a timeout period, similar
to the approach used by NFS.

6.1.5 Frontends

While semantic naming provides a powerful way to find and access data,
it is important to expose files to applications without requiring them to be
modified for a custom interface. The frontend core is a framework that con-
verts VFS calls into Perspective native calls. The core provides a common
platform, onto which developers may place a number of frontends to cus-
tomize the way semantic data is mapped into VFS. Applications and users
may view the same data through multiple different frontends at the same
time via this framework. Perspective uses FUSE to allow integration with
the filesystem from userspace.

The frontend core maps open, close, stat, read, write and truncate FUSE
calls into corresponding Perspective native calls. It maps getxattr and setx-
attr calls into readMetadata and writeMetadata function calls. Because there
is not a clear one-to-one mapping between semantic names and a hierarchi-
cal representation, each frontend provides its own method of converting a
path into a Perspective query. This is used by the frontend to complete read-
dir and getattr FUSE calls. Frontends are also given a callback on getattr
and readdir calls, to allow for custom processing if needed. Other opera-
tions (i.e. unlink, create, rename, mkdir and rmdir, symlink and readlink)
are highly specific to each frontend, so they are passed through directly
to each frontend, although the core provides helper functions and common
implementations to aid developers.

Each frontend is a C++ module written by a developer that can be linked
against Perspective. Table 6.3 shows the API for a frontend. A frontend can



78 · Putting Home Data Management into Perspective

Function Description
nameToQuery(in path, in queryType, out
query)

Convert a given path and query type (i.e. file or directory op)
into a Perspective query.

attrToName(in metadata, out names) Convert the given file metadata object into name(s) for the
results of a readdir call.

startingGetattr(in path, in query, out stat re-
sults, out handled)

A callback before a getattr call. The frontend can fill in the
result if desired. If handled is set to true, the frontend will
not continue with its normal path.

startingReaddir(in path, in query, out readdir
results, out handled)

A callback before a readdir call. The frontend can fill in extra
readdir names if desired. If handled is set to true, the frontend
will not continue with its normal path.

rmdir, mkdir, rename, unlink These calls are passed through directly to the frontend. The
default implementation returns not supported.

Table 6.3. Frontend API. This table details the API for a frontend.

be used system-wide or might be customized to a particular application.
Section 7.1 describes the frontends we have implemented so far.

Frontend queries: Frontend queries provide the central abstraction
for frontends. Table 6.4 shows the format for a frontend query. The query
specifies whether the query is local or global, a base query specified as a
Perspective query, and a frontend that will define how the resultant files are
displayed.

The individual frontend determines how the files are listed: as a flat list
of files, as a set of directories, or via some other structure. The frontend core
uses the frontend to convert from a directory into a Perspective query.

Each frontend is also responsible for implementing rename, mkdir and
rmdir, and the implementation is highly dependent upon the frontend itself.

The unlink operator is dependent upon whether the frontend query is
local or global. If it is a global query, then unlink will map to the unlink oper-
ator for Perspective. If it is a local query, unlink will map to the dropReplica
operator in Perspective.

When a file is created, the directory in which the file is created is con-
verted into a query by the frontend, and the frontend core then uses the
query to apply a set of default attributes to the new file.

Mount table: The mount table maps from a set of root directory entries
into a set of frontend queries. For example, the default Perspective mount
table makes the root of the Perspective mount look like the facet metadata
format by mapping it to the query /object[]facet. Advanced applications



6.1 Search and naming · 79

Rule Description
Query:- Basequery A query on global data.

local:Basequery A query on local-only data.
Basequery:- object[Stmt] Query displayed as a flat list.

object[Stmt]Frontend Query displayed with the given frontend.
Stmt:- defined in the Perspective query language.
Frontend:- name The name of the frontend.

name{Arguments} Frontends can have an options argument string.

Table 6.4. Fontend query. This table details the structure of a frontend
query.

and users can access raw Perspective queries by listing a special formatted
subdirectory in the .Raw directory. For example, to list all files using the
directory frontend, an application could list the directory .Raw/object[]dir.

6.1.6 Application views

Much of a users’ interaction with their data comes through applications, such
as iTune or iPhoto, that package and manage specific data types. Thus, it
is critical that file systems supporting these applications provide a way to
keep the metadata in the filesystem coordinated with the metadata in the
application, so that the user can manage their data with management tools
using the same metadata as they are accustomed to using in their regular
applications.

Perspective facilitates this through the use of application views. Appli-
cation views provide application-level event notification, similar to the per-
sistent queries proposed by Ensemblue [52]. An application can register an
application view, which like a normal view is described by a query and a
device, for the data in which it is interested. Perspective then ensures that
every update matching the view will create a notification on the given de-
vice. The application can then query for new notifications using an ioctl-like
interface to Perspective. The application can then use this information to
keep its view of the data in sync with the filesystem.

Application views are implemented in a very similar fashion to normal
views. Updates are routed in the same way as with any view. However, when



80 · Putting Home Data Management into Perspective

an update is received by the view manager, it places a notification in a local
database, rather than applying the update. When the application asks for
new updates, they are pulled from this temporary database. Perspective
ensures an at-least-once semantic, but may provide the same update to an
application multiple times. However, if a complete local view covers the
application view, we can guarantee that, while updates may be received
multiple times, an application will never receive an update less recent than
any previous update it received for a file.

We have built a java framework on top of Perspective that simplifies
the development of application-specific scripts using application-views. This
framework is part of the Perspective library and is described in Section
7.2.3.

6.2 Partial replication

Perspective supports partial replication among the devices in a home. De-
vices in Perspective can each store disjoint sets of files — there is no re-
quirement that any master device store all files or that any device mirror
another in order to maintain reliability. Previous systems have supported ei-
ther partial replication [27, 67] or topology independence [76], but not both.
Recently, PRACTI [14] provided a combination of the two properties, tied
to directories, but probably could be extended to work in the semantic case.
Cimbiosis [59] has also provided partial replication with effective topology
independence, although it requires all files to be stored on some master de-
vice. We present Perspective’s algorithms to show that it is possible to build
a simple, efficient consistency protocol for a view-based system, but a full
comparison with previous techniques is beyond the scope of my disserta-
tion. The related work section presents the differences and similarities with
previous work.

6.2.1 Consistency

As with many file systems that support some form of eventual consistency,
Perspective uses version vectors and epidemic propagation to ensure that



6.2 Partial replication · 81

all file replicas eventually converge to the same version. Version vectors in
Perspective are similar to those used in many systems; the vector contains a
version for each replica that has been modified. Because Perspective does not
have the concept of volumes, it does not support volume-level consistency
like Bayou. Instead, it supports file-level consistency, like FICUS [27].

Full file copies: Like a number of other filesystems [67, 69, 76] Perspec-
tive stores a file in its entirety, or not at all. This greatly simplifies reasoning
about the version of a file that is stored on a given device. However, this
does cause challenges with remotely accessing large files, such as movie files.
For these files, Perspective must wait until the full file is cached locally
before allowing access. In the future, remote access to these kinds of files
may require some sort of streaming support, although it would not require
permanent storage of partial copies of files.

Version vectors: When an application updates an object in any way, it
must increment the version vector associated with that object to reflect the
change. A version vector stores a version number for each modified replica
of the object in the system. It is used to determine which of two updates is
more recent or to detect if updates have been made concurrently [51] .

We exploit extensible metadata to implement version vectors. We store
each entry in the version vector as a metadata tag containing a replica ID and
the corresponding version number. We can decrease the storage consumed
by version vectors by simply omitting version numbers of zero, meaning that
each object need only contain version numbers for replicas that have actually
been modified [61].

Replica IDs are used to identify a replica’s entry in the version vector. In
many systems, the device ID is used as the replica ID. However, in Perspec-
tive, this is not adequate, because it allows devices to drop modified replicas
from their local stores.

If a device acquires a replica, modifies it, drops the replica from cache,
and then reacquires a replica at a later time, it cannot reuse the replica ID
it used previously. Version vectors will only work correctly if a particular
version of an object is unique. If a device reused a replica id, it could enter
a corner case that would generate two object versions with the same version



82 · Putting Home Data Management into Perspective

vector; if it were to drop an object, later get an older version of the object and
modify this older version, it might create a second version of the object with
the same version vector, making it impossible to determine which update
was more recent. Instead, we choose a new replica ID each time we create a
new local replica.

The replica ID for a replica is stored in the metadata associated with the
object. On a write to the object, the version manager uses the replica ID
to determine the entry in the version vector that should be updated. When
a device receives an update, it will clear the replica ID field and replace it
with an appropriate local replica ID.

6.2.2 Synchronization

Devices that are not accessible at the time of an update will receive that
update at synchronization time, when the two devices exchange information
about updates that may have been missed by each. Device and view files
are always synchronized before other files, to make sure the device does not
miss files matching new views. Perspective employs a modified update log to
limit the exchanges to only the needed information, much like the approach
used in Bayou [76]. However, the flexibility of views makes this task more
challenging.

For each update, the log contains the metadata for the file both before
and after the update. Upon receiving a sync request, a device returns all
updates that match the views for the calling device either before or after
the update. As in Bayou, the update log is only an optimization; we can
always fall back on full file-by-file synchronization.

Even occasional conventional full synchronization can be problematic for
heterogeneous devices with partial replication, especially for resource- and
battery-limited devices. For example, if a cell phone syncs with a desktop
computer, it is not feasible for the cell phone to process all of the files on the
desktop, even occasionally. To address this problem, Perspective includes a
second synchronization option. Continuing the example, the cell phone first
asks the desktop how many updates it would return. If this number is too



6.2 Partial replication · 83

large, the cell phone can pass the metadata of all the files it owns to the
desktop, along with the view query, and ask the desktop for updates for any
files that match the view or are contained in the set of files currently on
the cell phone. At each synchronization, the calling device can choose either
of these two methods, reducing synchronization costs to O(Nsmaller), where
Nsmaller is the number of files stored on the smaller device.

Full synchronizations will only return the most recent version of a file,
which may cause gaps in the update logs. If the update log has a gap in
the updates for a file, recognizable by a gap in the versions of the before
and after metadata, the calling device must pass this update back to other
devices on synchronization, even if the metadata does not match the caller’s
views, to avoid missing updates to files that used to match a view, but now
do not.

In addition, if a device gets an update, through a sync request, that is
older than the version it currently stores, it must alert the device with which
it was syncing of this new version. Otherwise, after a file is modified so that
it no longer matches the views on a device, the device might pick up an old
version of the file that does match the views.

Timestamp-based sync: The current implementation is simpler than
the full design. It provides all the needed functionality, but requires n-to-
n communication and does not allow filtering of updates. When a device
applies an update, it creates a new local timestamp and puts this timestamp
into the metadata for the file.

When a device receives a sync request, it returns the metadata for all files
with timestamps later than the timestamp passed by the remote device. This
does not allow for filtering of updates based on the views, since we don’t
keep intermediate updates, but it does assure correct operation and only
requires devices to return new updates.

Device ensembles: In order to form an ensemble, devices exchange
views with one another and sync with one another. When a device discovers
a new device, it will send a copy of its views to the new device and sync any
overlapping views with it.



84 · Putting Home Data Management into Perspective

When a device makes an update to an object or creates a new object,
it keeps a notation and occasionally sends an updatePending RPC to all
devices with matching views. Devices that receive the RPC in turn call sync
on the source device.

Devices in an ensemble do not have to share an owner or central server
in order to participate in an ensemble. An ensemble could contain devices
from one household, and also devices owned by visitors, without requiring
coordination through servers. Each device is free to decide whether to send
searches to, or accept data or updates from, another device.

Each device is only required to store view and device objects from devices
that contain replicas of files it stores, although they must also temporarily
store view and device files for devices in the current ensemble in order to
access their files. Because views are very small (hundreds of bytes), this is
tractable, even for small devices like cell phones.

6.2.3 Update connectivity

To keep all file replicas consistent, we need to ensure that updates will even-
tually reach all replicas. If all devices in the household sync with one another
occasionally, this property will be assured. While this is a reasonable assump-
tion in many homes, we do not require full pair-wise device synchronization.
Like many systems built on epidemic propagation, a variety of configura-
tions satisfy this property. For example, even if some remote device (e.g., a
work computer) never returns home, the property will still hold as long as
some other device that syncs with the remote device and does return home
(e.g., a laptop) contains all the data stored on the remote device. System
tools might even create views on such devices to facilitate such data transfer,
similar to the routing done in Footloose [50]. Alternately, a sync tree like
that used in Cimbiosis [59] could be layered on top of Perspective to provide
connectedness guarantees.

View freshness: View freshness timestamps allow Perspective to guar-
antee that all updates created before a given timestamp are safely stored
in the correct locations and, thus, have the fault-tolerance implied by the



6.2 Partial replication · 85

views and have appropriately up-to-date file replicas. Perspective calculates
view freshness timestamps by tracking the local logical time and the wall
clock time at which it last successfully synced with each remote device.

Each device stores this information in a synchronization object that is
then replicated across all devices in the home, along with views and de-
vices. Perspective uses these objects to provide a freshness timestamp for
each view. Perspective can guarantee that all file versions created before the
freshness timestamp for a view are stored on that view’s device. It can also
recommend sync operations needed to advance the freshness timestamp for
any view.

The freshness timestamp of a view is the latest of a number of candidate
timestamps computed from the synchronization objects.

– The earliest local sync timestamp for all devices with views overlapping
this view.

– The freshness timestamp for a device D that subsumes this view, where
the local device synced with D after the current freshness timestamp
for D.

The current implementation only checks the first condition, which will
work in the case where all devices sync with one another.

6.2.4 Conflicts

Any system that supports disconnected operation must deal with conflicts,
where two devices modify the same file without knowledge of the other
device’s modification. We resolve conflicts first with a pre-resolver, which
uses the metadata of the two versions to deterministically choose a winning
and losing version. Our pre-resolver can be run on any device without any
global agreement. It uses the file’s modification time and then the sorted
version vector in the case of a tie. But, instead of eliminating the losing
version, the pre-resolver creates a new file, places the losing version in this
new file. It then tags the new file with all metadata from the losing version, as
well as tags marking it as a conflict file and associating it with the winning



86 · Putting Home Data Management into Perspective

version. Later, a full resolver, which may ask for user input or use more
sophisticated logic, can search for conflict objects, remove duplicates, and
adjust the resolution as desired. The current implementation of Perspective
has only the pre-resolver implemented.

6.2.5 Capacity management

Pushing updates to other devices can be problematic, if those devices are at
full capacity. In this case, the full device will refuse subsequent updates and
mark the device file noting that the device is out of space. Until a user or tool
corrects the problem, the device will continue to refuse updates, although
other devices will be able to continue. However, management tools built on
top of Perspective should help users address capacity problems before they
arise.

6.2.6 File deletion

As in many other distributed filesystems, when a file is removed, Perspective
keeps a tombstone marker that assures all replicas of the file in the system
are deleted. The tombstone marker is ignored by all naming operations. To
make the tombstone, Perspective truncates the file to zero length and sets a
special deleted tag in the metadata. Note that deletion of a file removes all
replicas of a file in the system, which is a different operation from dropping
a particular replica of a file (done by manipulating views). This distinction
also exists in any distributed filesystem allowing replication.

6.2.7 Garbage collection

Over time, tombstones will accumulate in the system and must be garbage
collected. However, tombstones have little impact on the system and build
up slowly over time. For this reason, garbage collection can be a background
maintenance activity, much like filesystem defragmentation. The current im-
plementation of Perspective does not include garbage collection, and has
been storing my data for almost 2 years without a problem.



6.3 Reliability with partial replication · 87

In order to ensure complete garbage collection, the system must use
two phases of agreement, such as in ROAM [61]. However, it is possible to
support garbage collection with a single phase. To do so, each Perspective
device will track the local timestamp up to which each remote device has
synced with it. Once the timestamp for each device with matching views is
greater than the timestamp of the tombstone, the device can garbage collect
the tombstone. This simplifies the garbage collection algorithm and allows
the device to do garbage collection occasionally in the background.

It is possible for the tombstone to be reintroduced, if we roll off the edge
of another device’s log or if we haven’t synced with a remote device past
the tombstone on that device. However, this is invisible to the end user and,
in the common case will not happen. So long as the tombstone is garbage
collected eventually, it is fine for it to be reintroduced occasionally.

6.3 Reliability with partial replication

In order to manage data semantically, users must be able to achieve fault-
tolerance on data split semantically across a distributed set of disconnected,
eventually-consistent devices. Perspective ensures that data is never lost
despite arbitrary and disconnected view manipulation using three simple
distributed update rules. I will discuss a library that allows applications to
reason efficiently about fault-tolerance in this environment in Section 7.2.4.

6.3.1 Update rules

Perspective maintains permanence by guaranteeing that files will never be
lost by changes to views or by addition or removal of devices, regardless of
the order, timing, or origin of the changes, freeing the user from worrying
about these problems when making view changes. Perspective also provides
a guarantee that, once a version of a file is stored on the devices associated
with all overlapping views, it will always be stored in all overlapping views.
This guarantee ensures a given number of copies in the system based on the
current views.

These guarantees are assured by careful adherence to three simple rules:



88 · Putting Home Data Management into Perspective

(1) When a file replica is modified by a device, it is marked as “modified.”
Devices cannot evict modified replicas. Once a modified replica has
been pulled by a device holding a view covering it, the file can be
marked as unmodified and then removed.

(2) A newly created view cannot be considered complete until it has a
valid freshness timestamp.

(3) When a view is removed, all replicas in it are marked as modified. The
replicas are then removed when they conform to rule 1.

These rules ensure that devices will not evict modified replicas until they
are safely on some “stable” location (i.e., in a completely created view). The
rules also assure that a device will not drop a file until it has confirmed
that another up-to-date replica of the file exists somewhere in the system.
However, a user can force the system to drop a file replica without ensuring
another replica exists, if she is confident that another replica exists and
is willing to forgo this system protection. With these rules, Perspective can
provide permanence guarantees without requiring central control or limiting
when or where views can be changed.

6.4 Implementation

The Perspective prototype is implemented in C++ and runs at user-level
using FUSE [20] to connect with the system. It currently runs on both Linux
and Macintosh OS X. Perspective stores file data in files in each machine’s
local filesystem and metadata in a SQLite database with an XML wrapper.
While this reference implementation utilizes a particular set of algorithms,
the Perspective protocol is designed to allow a range of implementations
based on the sophistication and needs of the device.

This section outlines the details of the Perspective filesystem. The first
subsection outlines the Perspective protocols, separate from any specific im-
plementation. The second subsection outlines in detail the components of
our Perspective prototype. The third subsection outlines the local object



6.4 Implementation · 89

Rpc command Description
query(in query, out list<metadata>) Return the metadata for all objects

stored on the device that match query q.
updatePending() Inform a remote device that an update has

occurred on the local device.
pull(in oid, out metadata, out data) Get the data and metadata for the most recent

version of named object stored on this device.
sync(in timestamp, out list<metadata>) Return the metadata for all versions of files

modified by this device since the passed local timestamp.
objectCommitted(in metadata) After this RPC is called, a device is free to drop

the replica if it matches a partial view but not a
complete view.

Table 6.5. Perspective RPC calls. This table shows the five main Perspec-
tive RPC calls. Perspective also contains another one or two RPCs purely to
check a device’s status, but they are not needed for core system functionality.

store implementation. The fourth subsection outlines crash recovery. The
fifth subsection outlines getting and using data from remote devices.

6.4.1 Perspective protocols

There are two major components of the Perspective protocols. The first
is the RPC calls, which define the language that devices speak with one
another. The second is the Perspective native application API, which allows
applications to access information in the Perspective filesystem.

Perspective RPC calls

The Perspective protocol only requires devices to support five main RPC
calls. These calls allow devices to find data, manipulate data and views, and
synchronize data. The Perspective RPC interface is kept simple to allow both
sophisticated and simple implementations to use the same RPC protocol.
Figure 6.5 shows a summary of these five RPCs. Below, we provide more
detail on the requirements for each of these APIs.

query: A device responds to this RPC by returning the metadata for
all files that match the given query. The calling device is responsible for
assembling the results and keeping them up to date.

update: This RPC notifies a device that an object has been modified
or created. Devices must guarantee that it will eventually call this RPC on



90 · Putting Home Data Management into Perspective

Command Description
lookup(in query, in local-only, out list<metadata>) Return the metadata for all objects which match query q.
open(in oid, [in metadata], out handle) Open the given object. If the object is not

stored locally, the optional metadata will improve
the performance finding the object on a remote device.

close(in handle) Close the object.
read(in handle, in offset, in size, out data) Read from an object.
write(in handle, in offset, in size, in data) Write to an object.
readMetadata(in handle, out metadata) Read object metadata.
writeMetadata(in handle, in metadata) Write object metadata.
truncate(in handle, in size) Truncate the object.
create(in metadata, out oid) Create a new object.
delete(in oid) Delete the given object (removes from all devices).
dropReplica(in oid) Drop the local replica of this object if allowed by the

update rules. (Optionally could add a force option).

Table 6.6. Perspective native API. This figure lists the native Perspec-
tive calls. This API is used by frontends, which convert VFS-like calls into
Perspective native calls.

a remote device after a local update to a file matching one of the remote
device’s views. Upon receiving this RPC, a device should eventually call
sync on the sender of the RPC.

pull: A device responds to this RPC by returning the metadata and
data for a given object if it stores a version at least as recent as the given
metadata, or an error otherwise.

sync: A device responds to this RPC with the metadata of the current
version of each file stored on the device that has been modified since the
logical timestamp passed in the RPC. If the update log is enabled, this list
may only contain files that could be relevant to the calling device.

objectCommitted: This RPC should be called on a remote device after
the local device has committed a new version of a file that matches the
remote device’s views. Upon receiving this RPC, a device may clear the
modified tag on the given file if the local version is no more recent than the
version passed in the RPC.

Perspective native application API

The Perspective core provides a native API that is semantic and object-
based. This API includes standard filesystem operations like open, close,



6.4 Implementation · 91

read and write, in addition to search and metadata operations. Figure 6.6
shows the functions in this API.

Because Perspective is a semantic object store, search is the primary
way to locate data. In a traditional filesystem, an application accesses data
by first scanning directories to find an inode number and location, which it
uses to access a file. In Perspective, an application finds an object through
a search on object metadata, which leads to an object ID and location that
can be used to access the object.

While applications are free to program directly to the Perspective native
API, we expect that most applications will access data through frontends,
which map the Perspective native API into other interfaces, such as a stan-
dard VFS filesystem via FUSE. Section 7.1 describes the frontends in more
detail. The advantage of separating the core filesystem layer from the fron-
tends is the ability for frontends to visualize data (and policies) in different,
customized ways, while still providing all of the system properties of avail-
ability, redundancy and security on a common, flexible core implementation.
Frontends also allow Perspective to expose the more complex semantic data
through the conventional VFS interface.

6.4.2 Components

Figure 6.2 shows the major components of Perspective. We have designed
Perspective in a modular fashion, to allow alternate implementations (for
experimentation purposes) of many of the components.

View manager: The view manager handles all operations on views. It
sends update messages to the appropriate other devices when local changes
are made and accepts messages from remote devices, handing them off to
the object manager for processing. The view manager also decides which
objects to return when another device asks for sync information. Search
is also performed through the view manager, which passes the search on
to the appropriate devices. Overall, the view manager manages the control
messages for Perspective by communicating with view managers on remote
devices.



92 · Putting Home Data Management into Perspective

VFS

Application

Facet
Frontend

Object manager

FS
Metadata
database

Transfer
manager

Version
manager

Conflict
manager

View
manager

Perspective

Local object store

Application

Network

FUSE

Directory
Frontend

FUSE

Figure 6.2. Block diagram. This block diagram shows the major compo-
nents of the Perspective.

Transfer manager: The transfer manager is responsible for transferring
data between devices. The transfer manager may contain a set of data trans-
fer protocols from which it can choose an appropriate method, depending
on the data, the device, and current connectivity.

Version manager: The version manager compares two versions of an
object and decides which version is newest. If two versions conflict, it will
ask the conflict manager to resolve it. Perspective uses version vectors to
track object versions and identify conflicts.

Conflict manager: The conflict manager is responsible for resolv-
ing conflicts when the occur in the system. Perspective can use user di-
rected conflict resolution or application level resolvers, just like Coda and
Bayou [76, 67].

Object manager: The object manager coordinates updates to objects,
applying updates to the local store, passing messages to the frontends and
the view manager, and processing front end requests.

Frontend: A frontend is responsible for connecting an application to
Perspective. The frontend customizes the way in which it exports objects to
an application. A frontend could implement a standard file system interface



6.4 Implementation · 93

Column Description
oid The object id of this attribute
name The name of the attribute
value The value of the attribute
intvalue The value converted to an integer for indexing
position The position of the attribute in the xml doc

Table 6.7. Database schema. This table shows the schema of the local
store SQL database.

by mapping object attributes into a file system hierarchy, as in the Semantic
file system [22]. This allows an application to mount Perspective through a
standard file system interface. The frontend can convert from filesystem
directory operations into Perspective searches. Alternately, a frontend could
communicate directly with an application to customize the interface.

Local object store: The local object store stores object replicas and
metadata. We have implemented our own local object store, but any seman-
tic store would suffice.

6.4.3 Local object store

Perspective uses the local filesystem to actually store the files stored on
the device. Because our focus does not require innovation in on-disk layout,
this allows us to simplify our design. Theoretically, Perspective could use
any local filesystem that supports name-value pair metadata, although it is
unclear that commodity semantic filesystems would be appropriately tuned
to efficiently implement enumerate values and enumerate attributes queries.

The data for each file is stored in a file in a single directory in the
underlying filesystem, named by object ID. If needed, this could be extended
into a deeper hierarchy to decrease the size of each individual directory, but
this has not been slow enough to warrant optimization yet.

Perspective stores the metadata associated with each file as an XML
document, with the restrictions that each tag must be unique and no tag
can have child tags, i.e. the XML document is flat.

The metadata is stored in a SQLite database that is also stored in the
local filesystem. The SQLite database is surrounded by an XML wrapper



94 · Putting Home Data Management into Perspective

Format Value
Perspective query object[owner=Brandon and (sharing=Public or type)]
Disjunctive normal form object[(owner=Brandon and sharing=Public) or

(owner=Brandon and type)]
SQL select s3.oid, s3.name, s3.value from store s1, store s2, store s3 where

s1.name=’owner’ and s1.value=’Brandon and s2.name=’sharing’ and s2.value=’Public’
union select s3.oid, s3.name, s3.value from store s1, store s2, store s3 where
s1.name=’owner’ and s1.value=’Brandon’ and s2.name=’type’;

Table 6.8. Perspective query to SQL. This table shows the conversion
of an example Perspective query into disjunctive normal form, and then into
a SQL statement.

that converts between XML and SQL. The schema for the database, shown
in Table 6.7, allows us to index data without requiring an understanding of
the tags found in the system.

In order to convert a query into a SQL statement, we first apply De
Morgan’s laws and associativity to convert the query into disjunctive normal
form. This creates a query with groups of clauses combined with the and
operator, which are in turn combined with the or operator. We can then
convert this into SQL by creating a join and select operation for each clause
in the and groupings, and then unioning the results of each group across
the or operations. Table 6.8 shows an example of the conversion from a
Perspective query to SQL.

Enumerate values queries and enumerate attributes queries are imple-
mented using the distinct option and clauses on the name and value columns.
Table 6.9 shows an example of the SQL for an enumerate values query.

6.4.4 Crash recovery

After a crash, Perspective increments all the essential counters (the one used
for oid, the one used for logical timestamps, and the one used for replica
ids). To avoid having to keep a detailed write ahead log, Perspective uses
the fact that these counters are extremely large (unsigned 64 bit numbers)
and increments them by an amount guaranteed to be larger than the number
of operations that could be in flight between two sync calls.

Keeping metadata and data in sync: When a device crashes, Per-
spective also needs to make sure that the metadata and data still match and



6.4 Implementation · 95

Perspective query SQL

/object[]:album select distinct 0 as oid, s0.name as name,
s0.value as value, from store s0 where
s0.name = ’album’ union
select distinct 0 as oid, s0.name as name,
s0.value as value, from store s0 where not exists
(select * from store s1 where s1.oid = s0.oid
and s1.name = ’album limit 1);

/object[]:* select distinct 0 as oid, s0.name as name,
0 as value from store s0;

Table 6.9. Perspective enumerate values query to SQL. This table
shows example enumerate values and enumerate attributes queries converted
to SQL.

that the version on the resulting file is not the same as a different version of
the file. Perspective’s local object store does so by using commit timestamps
and an fsck on crash recovery. This process could be tuned using a write
ahead log, as is done in most contemporary filesystems.

The commit timestamp is a logical timestamp that is guaranteed to
increase monotonically, and always be distinguishable from a recent write
timestamp. Perspective uses a timestamp years in the future. On each update
Perspective will set the timestamp to the maximum of the current time
several years in the future, or the previous version of the timestamp+1.

This timestamp is put into the metadata for the object. Changes to the
file data will set the mtime to a time in the present, guaranteed not to equal
the commit timestamp. On file close, the data file is flushed to disk, the
database updates are committed, and then Perspective changes the mtime
of the file to match the commit timestamp.

On crash, Perspective does an fsck of the drive. For each file, it checks
the commit timestamp in the metadata against the mtime of the file. If the
two do not match, it changes the replica id of the file to a new replica id
and increments the version of the file.

This ensures that, if the original update was transferred to another device
before the crash, this version will conflict with the other version, allowing



96 · Putting Home Data Management into Perspective

the user to decide what version to use. If the update was not copied to
another device, then this new version will supercede the old version, just as
would happen with a local filesystem.

The object store also has a set operation that acts like a rename in the oid
space. This operation can also leave files with data not matching metadata.
However, we do not want to make these into a new version of the object,
since the interrupted operation was not actually modifying data in any way.
To distinguish between set operations and local updates, the set operator
uses a timestamp much farther in the future. Fsck throws any mismatching
files with this timestamp out. Since we could only get an interrupted set
operation if the update has not yet been committed to the store, we can be
sure another version of the object exists on some other device in the system,
due to the update rules described in Section 6.3. So we will pull the new
version of this object again when we see it.

6.4.5 Remote data access

While devices in Perspective can access the data of a file whether it is stored
locally or remotely, internally all data access in Perspective is local. In order
to access a remote file, Perspective will pull a local copy of the file, and then
treat all accesses as local accesses. The update rules described in Section 6.3
make sure that the local copy will be dropped when possible.

Pulling updates: When Perspective is asked to pull an update from
a remote device, it first checks all devices that could contain the object,
starting with the device that the current metadata came from, then trying
all devices with matching views, then trying all devices currently accessible.

Once it has located a device with an appropriate copy of the object, it
uses the pull RPC to get the data and metadata for the object. The update
is put into a temporary object with a special low oid that is ignored by
queries. If the remote object is modified during the download, it will restart.
Once the update has completely downloaded, Perspective checks to make
sure it is still more recent than the local replica, uses the set operation to
rename the temporary object over any existing object with the given oid.



6.5 Accessing and moving data · 97

6.5 Accessing and moving data

This section outlines the execution of a number of common operations, as
a way to review the various functions in Perspective. Applications access
data through a frontend mounted in the local VFS filesystem. The frontend
converts the VFS calls into the appropriate Perspective native calls and
relays the results back to the user.

Readdir: When an application does a readdir in a directory, the front
end converts the path of the directory into a Perspective query and forwards
the search request to the object manager. The object manager then asks the
view manager to forward the search to remote devices. The view manager
checks with the system views and forwards the operation to the appropriate
devices, possibly including the local device. These searches return the meta-
data for matching objects, which the view manager combines. This list of
object metadata is passed back to the frontend, which then converts these
metadata objects into filenames for the directory.

Create: When an application creates a new object, the front end con-
verts the path to the file into a query and then uses this query to create
a metadata object with the appropriate attributes set. It then passes the
metadata for the object into the object manager. The object manager as-
signs a new object ID and creates the object in the local object store. The
object manager returns the new object ID to the frontend for reference. It
also forwards the update to the view manager to forward to remote devices
with matching views.

Open: To open an object in Perspective, the frontend first looks up the
metadata for the object by converting the path to the object into a search,
just like a readdir request. It passes this metadata to the object manager.
The object manager extracts the object ID from the metadata. The object
manager then generates a new object manager handle which it attaches
to this object id. Note that the open operation will not pull a replica of
a remotely stored object. The get replica operation will be called to get a
remotely stored replica, when it is needed for later operations.

Read: To read an object, Perspective ensures that a copy of the object



98 · Putting Home Data Management into Perspective

is stored locally and open using the get replica command and then simply
reads data from this file.

Get replica: The object manager handle is associated with an object
id, which allows the object manager to index into the local object store and
look for the object. If the object is not found locally, the object manager
uses the metadata and views to query for a replica of the object on a another
device. It creates a local copy of the file which will be used until it is closed.
The object manager then opens the local replica and ties this handle to the
object manager handle.

Write: First, the object manager ensures that a local replica is open
using get replica. The object manager asks the version manager to update
the version vector for the given object. The object manager then writes the
changed data and metadata through to the local object store and asks the
view manager to send the update to the appropriate devices.

Read metadata: To read the metadata of an object, an application
calls getxattr on a special Perspective attribute. To satisfy the request, the
frontend looks up the metadata for the file, using the cached query associated
with the directory in which the file is stored.

Write metadata: First, the object manager ensures that a local replica
is open using get replica. The object manager asks the version manager to
update the version vector for the given object. The object manager then
writes the changed metadata to the local object store and asks the view
manager to send the update to the appropriate devices.

Delete: The delete operation truncates the file to zero length and sets a
special “deleted” attribute in the metadata. The metadata then serves as a
tombstone that marks it as deleted and hides it from normal queries [28]. It
then forwards the update to the view manager to forward to the appropriate
devices.

Forwarding updates: Any local modification to an object must even-
tually be passed to remote devices with matching views. Each time a local
file is modified, the view manager adds an entry for each device with views
that match the file before or after the update to a list. Occasionally, the view



6.5 Accessing and moving data · 99

manager sends a pendingUpdates RPC to each device on the list, notifying
the device to sync with the local device.



100 · Putting Home Data Management into Perspective



7 Insight: view-based management tools

Because I focused on usability, it was not sufficient to implement a filesys-
tem; I also had to implement a set of tools to allow users to manipulate the
filesystem. Insight is a set of management tools written to utilize the Per-
spective filesystem. Insight includes a set of frontends linked into Perspective
that allow devices to customize the way data is presented to applications
or users. Insight also includes a java toolkit containing core algorithms for
applications that manipulate views. Insight also includes interfaces for ma-
nipulating views and object metadata.

7.1 Frontends

Perspective provides a semantic interface, but it is important to map this
semantic interface through the standard VFS layer to allow commodity ap-
plications to access the data. Frontends allow applications to map the seman-
tic naming of Perspective into other naming schemes, such as a hierarchical
naming scheme. This section describes the frontends I have implemented in
detail. Each query in Perspective has a base query in the native Perspec-
tive query language, and then a frontend defines how the files matching this
query are displayed. Each frontend is a small C++ module which is linked
with Perspective. Each module implements a way to convert from a VFS
path into Perspective queries and implements name operations like rename,
mkdir, rmdir, etc.

I implemented four frontends, each of which fills a different purpose. I
expect that developers who work in Perspective will build other frontends
to accommodate their needs as well.

101



102 · Putting Home Data Management into Perspective

7.1.1 Customizable faceted metadata frontend

Most naming in Perspective is done through a frontend called the customiz-
able faceted metadata frontend.

One way of visualizing and accessing semantic data is through the use
of faceted metadata [84]. Faceted metadata allows a user to choose a first
attribute to use to divide the data and a value at which to divide. Then, the
user can choose another attribute to divide on, and so on. Faceted metadata
helps users browse semantic information by giving them the flexibility to
divide the data as needed. But, it can present the user with a dizzying array
of choices in environments with large numbers of attributes.

To curb this problem, I developed customizable faceted metadata, which
exposes a small user-selected set of attributes as directories plus one addi-
tional other groupings directory that contains a full list of possible attributes.
The user can customize which attributes are displayed in the original list by
moving folders between the base directory and the other groupings directory.
These preferences are saved in a customization object in the filesystem. By
performing these customizations, the user can effectively build a set of hier-
archies, while still having the advantage of being able to divide their data
in the manner most convenient. Figure 7.1 illustrates customizable faceted
metadata as browsed from the Finder.

Customizable faceted metadata provides three different types of directo-
ries. Attribute directories show a list of possible attributes and are translated
into enumerate attribute queries. Value directories show the possible values
of a particular attribute and are translated into enumerate values queries.
File directories show the files in a particular group as a flat list and are
translated into normal queries. Table 7.1 shows the translation of several
paths into Perspective queries.

Challenges in accommodating applications: While it is conceptu-
ally fairly simple to expose faceted metadata through the VFS layer, some
of the details of exposing faceted metadata over VFS to unmodified applica-
tions have been very tricky to get right. This section outlines some of these
challenges.



7.1 Frontends · 103

Figure 7.1. Customizable faceted metadata frontend. This figure
shows a screenshot of customizable faceted metadata through the Finder.

Path Perspective query
object[]facet/All files/All files grouped by owner/Files with owner=’Bob’ object[owner=’Bob’]:*
object[]facet/All files/All files grouped by owner/Files with owner=’Bob’ object[owner=’Bob’]:type
/Files with owner=’Bob’ grouped by type
object[]facet/All files/All files grouped by owner/Files with owner=’Bob’ object[owner=’Bob’]
/Files with owner=’Bob’ by name

Table 7.1. Mapping customizable faceted metadata to Perspective
queries. This table shows the way a number of paths in customizable
faceted metadata are converted into Perspective queries.



104 · Putting Home Data Management into Perspective

Source Destination
object[]facet/All files/All files grouped by owner/ object[]facet/Files with owner=’Bob’
Files with owner=’Bob’
object[]facet/All files/All files grouped by album/ object[]facet/Files with album=’Pop’
Files with album=’Pop’

Table 7.2. Symbolic links in faceted metadata. This table shows the
destination of two example symlinks in the facet frontend.

Enumeration: One of the challenges is dealing with enumeration. Many
applications attempt to recurse through file subtrees and analyze all files.
While this works well in a standard files-and-folders system, the flexibility of
faceted metadata makes it effectively an infinitely deep tree, with the same
file appearing in multiple paths.

Full recursion of subtrees happens surprisingly frequently. For example,
the OS X finder actually attempts to fully recurse a subtree any time a user
attempts to move, remove or modify a file subtree.

To address this challenge, we expose all faceted directories as symbolic
links rather than actual directories. Each link points to a directory in the
root of the volume that contains the full path. Table 7.2 describes the source
and destination of several example links. Well-behaved applications do not
traverse symbolic links when doing recursion to avoid loops, which means
they will not try to enumerate the full subtree. The sort frontend, described
in the next section, allows applications to enumerate files when needed.

Stable paths: Applications also require stable file paths. If they access
a file using a particular faceted path, they expect that path to continue to
be valid, even if users in general use a different type of path. For this reason,
we return success when calling getattr on a faceted sub-directory, even if it
isn’t in the commonly used set of attributes. Symbolic links also help this
process, as they collapse a path into a more concise query.

Mkdir, rmdir: The mkdir and rmdir operations are also challenging to
do correctly. For example, most finders create a new directory with a default
name. This is a challenge for faceted metadata, as each directory must have
a specific format. To accommodate these applications, Perspective allows an
application to create a directory even if it doesn’t match the query format.



7.1 Frontends · 105

Figure 7.2. Sort frontend. This figure shows the sort frontend through
the finder. Note that this sort query sorts based on author and album.

If it does not match this format, the faceted frontend will convert it into the
correct format, allow the mkdir to succeed, and then begin displaying the
symbolic link for the correct name.

7.1.2 Sort frontend

The sort frontend allows an application to choose a specific set of attributes
to use to sort a given set of files. This allows applications to enumerate a
set of files too large to deal with in a flat directory. The configuration string
for this frontend lists a set of attributes. The first level of the hierarchy will
be the values of the first attribute, the second level of the hierarchy the
second attribute, etc. This allows a music program, for example, to divide
the results of a query by artist and then by album.

To convert a sort frontend path to a Perspective query, the frontend
determines if the given directory is of the depth of the number of attributes.
If it is less than the number of attributes, then it uses an enumerate values
query to find all values of the appropriate attribute. If the tree depth is the
number of attributes, it uses a normal query to list the given files. Table 7.3
shows the translation of several paths into Perspective queries.



106 · Putting Home Data Management into Perspective

Path Perspective query
object[]sort{artist}{album} object[]:artist
object[]sort{artist}{album}/U2 object[artist=’U2’]:album
object[]sort{artist}{album}/U2/Pop object[artist=’U2’ and album=’Pop’]

Table 7.3. Mapping sort to Perspective queries. This table shows the
conversion from three sort paths into native Perspective queries.

7.1.3 Directory frontend

It is also necessary to provide some applications with an actual files-and-
folders visualization of their data. The directory frontend provides this vi-
sualization and stores the directory structure in metadata tags.

This frontend is implemented by setting a special set of tags. Each file is
tagged with an attribute for each level of the path, along with a depth in the
path. Empty directories are represented by files with the correct attributes
and a special name (“.”). To search for all files in a directory, the frontend
creates a Perspective search for all files with the correct path. The frontend
also searches for all subdirectories, by looking for all values of the attribute
next in the path in files inside the current subtree. Table 7.4 shows an
example of the conversion between a path in the hierarchy and Perspective
native queries.

Note that this frontend actually implements a union style system. A
subtree will exist if any file on any machine exists in that subtree. This makes
it easy to construct the file tree as devices enter and leave the ensemble.

Applications that require a file hierarchy should also set appropriate
tags to allow users to browse the data with faceted metadata. For example,
iTunes actually writes new files into a directory tree, but scripting makes
sure that files are also tagged with author, album, etc.

7.1.4 Search frontend

The simplest frontend is the search frontend. This frontend simply displays
all files that match the base query in a flat list of files. This makes it easy for
users to do individual searches in the filesystem, but may become intractable



7.2 Libperspective · 107

Path Perspective query
object[]dir/Music object[pathDepth=2 and path1=Music] +

object[pathDepth>2 and path1=Music]:path2

Table 7.4. Mapping directories to Perspective queries. This table
shows how an example directory frontend path is converted into native Per-
spective queries.

Path Perspective query
object[name contains ’Love’] object[name contains ’Love’]
object[type=Music and size < 1000]/foo.mp3 object[name=’foo.mp3’ and type=Music

and size < 1000]

Table 7.5. Mapping search frontend paths into native Perspective
queries. This table shows how two example search frontend paths are
converted into native Perspective queries.

when dealing with large numbers of files. This frontend is the default fron-
tend applied to raw Perspective queries. Table 7.5 shows example conversions
of search frontend paths into native Perspective queries.

7.2 Libperspective

Perspective also provides a library for applications that wish to manage data
in Perspective. This library contains a C++ component linked with a set
of Java libraries. The library contains methods to manipulate metadata on
individual files, methods to manipulate views and devices, and methods to
reason about the redundancy of data.

7.2.1 Manipulating file metadata

The metadata in files is accessible to applications using the getxattr and setx-
attr commands. Currently, Perspective exports all of a file’s attributes as the
text of an XML document in a single extended attribute with a special name
(“perspective mdata”). However, it would also be possible to expose each in-
dividual attribute through a separate extended attribute name. Since many
versions of Java do not include extended attributes, libperspective contains
functions to read and write metadata from files for Java applications.



108 · Putting Home Data Management into Perspective

Attribute name Description
viewObject If this tag is present, the file is a view.
name Name of the view, constructed from other tags
query The view query
deviceId The id of the device this view is attached to.
viewType The type of view (partial, complete, application)

Table 7.6. View attributes. This table shows the attributes in a view.

Attribute name Description
deviceObject If this tag is present, the file is a device.
name Name of the device.
id The id of the device.
owner The owner of the device.
household The household of the device.
capacity The total capacity of the device.
availableCapacity The free space on the device.

Table 7.7. Device attributes. This table shows the attributes in a device.

7.2.2 Manipulating views and devices

Views and devices show up as special files in the filesystem. The important
information about each device or view is contained in the metadata for the
corresponding file. Table 7.6 shows the attributes of views, and Table 7.7
shows the attributes of devices. Libperspective contains methods to create,
delete and modify views, and methods to delete device objects after a de-
vice fails. The methods simply manipulate the corresponding files and their
metadata.

7.2.3 Application view framework

The application view framework simplifies the use of application views to
keep applications in sync with Perspective. Section 6.1.6 describes applica-
tion views in detail. This section describes an application framework utilizing
the feature. The framework includes a main java base class for an applica-
tion and a central class that runs the framework for all installed applications.
Each application only needs to implement a subclass of the base class.



7.2 Libperspective · 109

The framework installs a cron job that executes every few seconds. It
reads from a config file to discover the installed applications and the appli-
cation views for each application. It then reads all of the outstanding updates
for the application view and calls a subclass specific to the application to
handle each update.

7.2.4 Reasoning about file replicas with overlap trees

Reasoning about the reliability of a storage system — put simply, deter-
mining the level of replication for each data item — is a challenge in a
partially-replicated filesystem. Since devices can store arbitrary subsets of
the data, there are no simple rules that allow all of the replicas to be counted.
Libperspective provides an overlap tree library to facilitate reasoning about
the number of replicas in the system.

A näıve solution would be to enumerate all of the files on each device
and count replicas. Unfortunately, this would be prohibitively expensive and
would be possible only if all devices are currently accessible. Fortunately,
Perspective’s views compactly and fully describe the location of files in terms
of their attributes. Since there are far fewer views than there are file replicas
in the system, it is cheaper to reason about the number of times a particular
query is replicated among all of the views in the system than to enumerate
all replicas. The files in question could be replicated exactly (e.g., all of the
family’s pictures are on two devices), they could be subsumed by multiple
views (e.g., all files are on the desktop and all pictures are on the laptop),
or they could be replicated in part on multiple devices but never in full on
any one device (e.g., Alice’s pictures are on her laptop and desktop, while
Bob’s pictures are on his laptop and desktop – among all devices, the entire
family’s pictures have two replicas).

To efficiently reason about how views overlap, Perspective uses overlap
trees. An overlap tree encapsulates the location of general subsets of data
in the system and, thus, simplifies the task of determining the location of
the many data groupings needed by management tools. An overlap tree is



110 · Putting Home Data Management into Perspective

currently created each time a management application starts and then used
throughout the application’s runtime to answer needed overlap queries.

Overlap trees are created using enumeration queries. Each node contains
a query that describes the set of data that the node represents. Each leaf
node represents a subset of files whose location can be precisely quantified
using the views and records the devices that store that subset. Each interior
node of the tree encodes a subdivision of the attribute space and contains
a list of child nodes, each of which represents a subset of the files that the
parent node represents. We begin building the tree by enumerating all of
the attributes that are used in the views found in the household.

We create a root node for the tree to represent all files, choose the first
attribute in our attribute list, and use the enumerate values query to find
all values of this attribute for the current node’s query. We then create
a child node from each value with a query of the form <parent query>
and attribute=value. We compare the query for each child node against the
complete views on all devices. If the compare operator can give a precise
answer (i.e., not unknown) for whether or not the query for this node is
stored on each device in the home, then this node is a leaf and we can
stop dividing. Otherwise, we recursively perform this operation on the child
node, dividing it by the next attribute in our list. Figure 7.3 shows an
example overlap tree. The ordering of the attribute list could be optimized
to improve performance of the overlap tree, but I leave it unordered in the
current implementation.

When we create an overlap tree, we may not have all information needed
to construct the tree. For example, if we currently only have access to Brian’s
files, we may incorrectly assume that all music files in the household are
owned by Brian, when music files owned by Mary exist elsewhere in the
system. The tree construction mechanism makes a notation in a node if it
cannot guarantee that all matching files are available via the views. When
checking for overlaps, if a marked node is required, the tree will return an
unknown value, but it will still correctly compute overlaps for queries that do
not require these nodes. To avoid this restriction, devices are free to cache
and update an overlap tree, rather than recreating the overlap tree when



7.2 Libperspective · 111

each management application starts. The tree is small, making caching it
easy. To keep it up to date, a device can publish a view for all files and then
use the updates to keep the cached tree up to date.

Once we have constructed the overlap tree, we can use it to determine
the location and number of full copies in the system of the files for any
given query. Because the tree caches much of the overlap processing, each
individual query request can be processed efficiently. We do so by traversing
all of the leaf nodes and finding those that overlap with the given view or
query. We may occasionally need to perform more costly overlap detection,
if the attribute in a leaf node does not match any of the attributes in the
query. For example, in the overlap tree in Figure 7.3, if we were checking to
see if the query album=Joshua Tree was contained in the node owner=Mary
and type=Music, we would use the enumerate values query to determine
the values of “type” for the query album=Joshua Tree and owner=Mary. If
“Music” is the only value, then we can count this node as a full match in our
computations. Otherwise, we cannot. This extra comparison is only valid if
we can determine; via the views, that all files in the query for which we are
computing overlaps are accessible

Attributes with larger cardinalities can be handled more efficiently by
selectively expanding the tree. For example, if a view is defined on a query
such as date < T, we need only expand the attribute date into three sub-
nodes, one for date < T, one for date ≥ T, and one for has no date attribute.

Note that the number of attributes used in views at any one time is likely
to be much smaller than the total number of attributes in the system, and
both of these will be much smaller than the total number of files or replicas.
For example, in our contextual analysis, most households described settings
requiring around 20 views and 5 attributes for views. None of households
we interviewed described more than 30 views or more than 7 attributes
for views. Because the number of relevant attributes is small, overlap tree
computations are fast enough to allow us to compute them in real time as
the user browses files. We will present a performance comparison of overlap
trees to the näıve approach in Section 8.



112 · Putting Home Data Management into Perspective

!""#$%"&'#

()*&+,-+%.*# ()*&+,/.+0#

()*&+,/.+0#.*1#

203&,/4'%5#

()*&+,/.+0#.*1#

203&,6(547&*2#

()*&+,/.+0#.*1#

203&,8%524+&#

!"#$%&'$()*(+&,)*"-.&

/$"0&'$()*(+&1*)&2)*"-.&

3$4#'0&.-25)*(+&1*)&2)*"-.&

!"#$%&'$()*(+&1*)&2)*"-.&

/$"0&'$()*(+&,)*"-.&

3$4#'0&.-25)*(+&,)*"-.&

!"#$%&'$()*(+&1*)&2)*"-.&

/$"0&'$()*(+&,)*"-.&

3$4#'0&.-25)*(+&1*)&2)*"-.&

!"#$%&'$()*(+&1*)&2)*"-.&

/$"0&'$()*(+&,)*"-.&

3$4#'0&.-25)*(+&1*)&2)*"-.&

Figure 7.3. Overlap tree. This figure shows an example overlap tree, con-
structed from a three-device, three-view scenerio: Brian’s files stored on
Brian’s laptop, Mary’s files stored on Mary’s laptop, and Mary’s music stored
on the Family desktop. Shaded nodes are interior nodes and unshaded nodes
are leaf nodes. Each leaf node lists whether or not this query is stored on
each device the household.



7.3 Interfaces · 113

7.3 Interfaces

Insight also includes several interfaces for manipulating metadata and views.
The viewmanager interface allows users to create and modify views, and the
pchatr interface allows users to view and modify metadata assigned to files.

7.3.1 View manager interface

To explore view-based management, we built a view manager tool to allow
users to manipulate views. The view manager interface (Figure 8.1) allows
users to create and delete views on devices and to see the effects of these
actions. This GUI is built in Java and makes calls into the view library of
the underlying filesystem.

The GUI is built on Expandable Grids [62], a user interface concept
initially developed to allow users to view and edit file system permissions.
The interface significantly simplified these tasks by allowing users to view
and edit effective permissions, rather than requiring the user to manipulate
and understand a set of rules. We apply Expandable Grids to storage policies
in our system. Each row in the grid represents a file or file group, and each
column represents a device in the household. The color of a square represents
whether or not the files in the row are stored on the device in the column.
The files can be “all stored” on the device, “some stored” on the device, or
“not stored” on the device. Each option is represented by a different color
in the square. By clicking on a square a user can add or remove the given
files from the given device. Similarly to file permissions, this allows users to
manipulate actual storage decisions, instead of rule lists.

An extra column, labeled “Summary of failure protection,” shows
whether the given set of files is protected from one failure or not, which
is true if there are at least two copies of each file in the set. By clicking
on an unbacked-up square, the user can ask the system to ensure that two
copies of the files are stored in the system, which it will do by placing any
extra needed replicas on devices with free space.

An extra row contains all unique views and where they are stored, al-
lowing a user to see precisely what data is stored on each device at a glance.



114 · Putting Home Data Management into Perspective

Figure 7.4. View manager interface. A screen shot of the view manager
GUI. On the left are files, grouped using faceted metadata. Across the top
are devices. Each square shows whether the files in the row are stored on
the device in the column.



7.3 Interfaces · 115

7.3.2 Pchatr interface

The pchatr interface allows users to view and modify the metadata associ-
ated with a file. It can be run in a GUI mode or in a command line mode.

To run the GUI mode, the user passes the program a list of files or di-
rectories to parse. The tool finds all of the common metadata attributes and
displays them in a GUI format. The user can add attributes, remove at-
tributes, or modify attributes with the GUI. When finished, the user pushes
the “OK” button, and the tool applies the changes to all of the files. If the
user pushes “Cancel,” the updates are aborted.

The command line mode takes a list of files and a query to use to set
attributes on these files. For example, to add the tags, owner=Bob and
type=Music, the user would pass through the query, object[owner=Bob and
type=Music. The tool then applies the query to each file in the set.



116 · Putting Home Data Management into Perspective

Figure 7.5. Pchatr interface. This figure shows the pchatr interface for
manipulating file metdata.



8 Evaluation

My experience from working with many home storage users suggests that
users are very concerned about the time and effort spent managing their de-
vices and data at home, which has motivated both my design of Perspective
and my evaluation. Therefore, I focus my study primarily on the usability of
Perspective’s management capabilities and secondarily on its performance
overhead.

To address the usability of the system, I performed an in-lab user study
to test how views impact management tasks, described in Section 8.1. I also
started a long-term deployment of Perspective in two households, described
in Section 8.2.

To show the feasibility of such a system, I performed several high-level
benchmarks to evaluate performance overhead, described in Section 8.3. To
illustrate some of the tradeoffs involved in Perspective’s design decisions, I
did several micro-benchmarks and qualitative comparisons of approaches,
described in Section 8.4.

8.1 Usability lab study

I conducted a lab study in which non-technical users used Perspective, out-
fitted with appropriate user interfaces, to perform home data management
tasks. I measured accuracy and completion time of each task. In order to
insulate my results as much as possible from the particulars of the user inter-
face used for each primitive, I built similar user interfaces for each primitive
using the Expandable Grids UI toolkit [62].

117



118 · Putting Home Data Management into Perspective

Views-facet interface: The views-facet interface was described in Sec-
tion 7.3.1. It uses customizable faceted metadata, described in Section 7.1.1,
to describe data, and allows users to place any set of data described by the
faceted metadata on any device in the home. Figure ?? shows the interface.

Volumes interface: This user interface is similar, but built on top of
a more conventional volume-based system with directory hierarchies. Each
device is classified as a client or server, and this distinction is listed in the
column along with the device name. The volumes abstraction only allows
permanent copies of data to be placed on servers, and it restricts server
placement policies on volume boundaries. I defined each root level directory
(based on user) as a volume. The abstraction allows placement of a copy
of any subtree of the data on any client device, but these replicas are only
temporary caches and are not guaranteed to be permanent or complete. The
interface distinguishes between temporary and permanent replicas by color.
The legend displays a summary of the rules for servers and permanent data
and for clients and temporary data. Figure 8.2 shows a screenshot of the
volume manager.

Views-directory interface: To tease apart the effects of semantic nam-
ing and using a single replica class, I evaluated an intermediate interface,
which replaces the customizable faceted metadata organization with a tra-
ditional directory hierarchy. Otherwise, it is identical to the views-facet in-
terface. In particular, it allows users to place any subtree of the hierarchy on
any device. Figure 8.3 shows a screenshot of the views-directory interface.

8.1.1 Experiment design

My user pool consisted of students and staff from nearby universities in
non-technical fields who stated that they did not use their computers for
programming. I did a between-group comparison, with each participant using
one of the three interfaces described above. I tested 10 users in each group,
for a total of 30 users overall. The users performed a think-aloud study in
which they spoke out loud about their current thoughts and read out loud
any text they read on the screen, which provides insight into the difficulty



8.1 Usability lab study · 119

Figure 8.1. View manager interface. A screen shot of the view manager
GUI. On the left are files, grouped using faceted metadata. Across the top
are devices. Each square shows whether the files in the row are stored on
the device in the column.



120 · Putting Home Data Management into Perspective

Figure 8.2. Volumes and caching interface. A screen shot of the vol-
ume manager GUI. On the left are files, grouped using traditional files-and-
folders. Across the top are devices. Each square shows whether the files in
the row are stored on the device in the column and whether the copy is
temporary or permanent.



8.1 Usability lab study · 121

Figure 8.3. Directory interface. A screen shot of the directory manager
GUI. On the left are files, grouped using traditional files-and-folders. Across
the top are devices. Each square shows whether the files in the row are stored
on the device in the column.



122 · Putting Home Data Management into Perspective

of tasks and users’ interpretation. All tasks were performed in a latin square
configuration, which guarantees that every task occurs in each position in
the ordering and that each task is equally likely to follow any other task.

I created a filesystem with just over 3,000 files, based on observations
from my contextual analysis. I created a setup with two hypothetical users,
Mary and Brian, and a third “Family” user with some shared files. I modeled
Brian’s file layout on the Windows music and pictures tools and Mary’s
on Apple’s iTunes and iPhoto file trees. My setup included four devices:
two laptops, a desktop, and a DVR. I also provided the user with iTunes
and iPhoto, with the libraries filled with all of the matching data from the
filesystem. This allowed us to evaluate how users convert from structures in
the applications to the underlying filesystem.

8.1.2 Tasks

Each participant performed the same set of tasks, which I designed based on
my contextual analysis. I started each user with a 5 to 10 minute training
task, after which my participants performed 10 data management tasks. As
I discuss each class of tasks, I include the text of one example task. The
full text of all the tasks can be found in Appendix B. For this study, I
chose tasks to illustrate the differences between the approaches. A base-
case task that was similar in all interfaces confirmed that, on such tasks,
all interfaces performed similarly. The tasks were divided into two classes:
single replica tasks and data organization tasks. The data organization tasks
can further be divided into three classes: aggregation, comprehension and
sparse collection.

Single replica tasks: Two single replica tasks (LH and CB) required
the user to deal with distinctions between permanent and temporary replicas
to be successful.

Example task, Mary’s laptop comes home (LH): “Mary has not taken
her laptop on a trip with her for a while now, so she has decided to leave it
in the house and make an extra copy of her files on it, in case the Family
desktop fails. However, Brian has asked her not to make extra copies of his



8.1 Usability lab study · 123

files or of the Family files. Make sure Mary’s files are safely stored on her
laptop.”

Mary’s laptop was initially a client in the volume case. This task asked
the user to change it to a server before storing data there. This step was not
required for the single replica class interfaces, as all devices are equivalent.

Note that because server/client systems, unlike Perspective, are designed
around non-portable servers for simplicity, it is not feasible to simply make
all devices servers. Indeed, my volume interface actually makes this task
much simpler than current systems; in the volume interface, I allow the user
to switch a device from server to client using a single menu option, where
current distributed filesystems require an offline device reformat.

Data organization tasks: The data organization tasks required users
to convert from structures in the iTunes and iPhoto applications into the
appropriate structures in the filesystem. This allowed us to test differences
between a hierarchical and semantic, faceted systems. The data organiza-
tion tasks are divided into three sub-types: aggregation, comprehension, and
sparse collection tasks.

Aggregation One major difference between semantic and hierarchical sys-
tems is that, because the hierarchy forces a single tree, tasks that do not
match the current tree require the user to aggregate data from multiple di-
rectories. This is a natural case as homes fill with aggregation devices and
data is shared across users and devices. However, in a hierarchical system,
it is difficult for users to know all folders that correspond to a given appli-
cation grouping. Users often erroneously assumed that all files for a given
collection were in the same folder. The semantic structure mitigates this
problem, since the user is free to use a filesystem grouping suited to the
current specific task.

Example task, U2 (U2): “Mary and Brian share music at home. How-
ever, when Mary is on trips, she finds that she can’t listen to all the songs
by U2 on her laptop. She doesn’t listen to any other music and doesn’t want
other songs taking up space on her laptop, but she does want to be able to
listen to U2. Make sure she can listen to all music by the artist U2 on her
trips.”



124 · Putting Home Data Management into Perspective

As may often be the case in the home, the U2 files were spread across
all three user’s trees in the hierarchical interfaces. The user needed to use
iTunes to locate the various folders. The semantic system allowed the user
to view all U2 files in a single grouping.

Aggregation is also needed when applications sort data differently from
what is needed for the current task. For example, iPhoto places modified
photos in a separate folder tree from originals, making it tricky for users to
get all files for a particular event. The semantic structure allows applications
to set and use attributes, while allowing the user to group data as desired.

Example task, Rafting (RF): “Mary and Brian went on a rafting trip
and took a number of photos, which Mary remembers they labeled as ‘Raft-
ing 2007’. She wants to show her mother these photos on Mary’s laptop.
However, she doesn’t want to take up space on her laptop for files other than
the ‘Rafting 2007’ files. Make sure Mary can show the photos to her mother
during her visit.”

The rafting photos were initially in Brian’s files, but iPhoto places mod-
ified copies of photos in a separate directory in the iPhoto tree. To find both
folders, the user needed to explore the group in iPhoto. The semantic system
allows iPhoto to make the distinction, while allowing the user to group all
files from this roll in one grouping.

Comprehension Applications can allow users to set policies on applica-
tion groupings, and then convert them into the underlying hierarchy. How-
ever, in addition to requiring multiple implementations and methods for the
same system tasks, this leads to extremely messy underlying policies, which
make it difficult for users to understand, especially when viewing it from
another application. In contrast, semantic systems can retain a description
of the policy as specified by the application, making them easier for users
to understand.

Example task, Traveling Brian (TB): “Brian is taking a trip with his
laptop. What data will he be able to access while on his trip? You should
summarize your answer into two classes of data.”

Brian’s laptop contained all of his files and all of the music files in the
household. However, because iTunes places TV shows in the Music repos-



8.1 Usability lab study · 125

itory, the settings included all of the music subfolders, but not the “TV
Shows” subfolder, causing confusion. In contrast, the semantic system al-
lows the user to specify both of these policies in a single view, while still
allowing applications to sort the data as needed.

Note that this particular task would be simpler if iTunes chose to sort
its files differently, but the current iTunes organization is critical for other
administrative tasks, such as backing up a user’s full iTunes library. It is
impossible to find a single hierarchical grouping that will be suited to all
needed operations. This task illustrates how these kinds of mismatches occur
even for common tasks and well-behaved applications.

Sparse collection Two sparse collection tasks (BF and HV) required users
to make policies on collections that contain single files from across the tree,
such as song playlists. These structures do not lend themselves well to a
hierarchical structure, so they are kept externally in application structures,
forcing users to re-create these policies by hand. In contrast, semantic struc-
tures allow applications to push these groupings into the filesystem.

Example task, Brian favorites (BF): “Brian is taking a trip with his
laptop. He doesn’t want to copy all music onto his laptop as he is short on
space, but he wants to have all of the songs on the playlist “Brian favorites”.”

Because the playlist does not exist in the hierarchy, the user had to add
the nine files in the playlist individually, after looking up the locations using
iTunes. In the semantic system, the playlist is included as a tag, allowing
the user to specify the policy in a single step.

8.1.3 Observations

I was surprised at how well novice users were able to perform these tasks,
even with the more complex volumes interface. The overall accuracy rate
for the views-facet interface was 87%. The views-directory interface trailed
slightly, at 81%. The volumes interface had the lowest accuracy of 69%.

The think-aloud nature of my study allowed us to observe a variety of
trends in the way users utilized these interfaces. For example, users did have
trouble getting accustomed to common UI conventions, such as expanding



126 · Putting Home Data Management into Perspective

file groups and working with popup menus; in the pilot test, before I added
some initial nuts-and-bolts interface training, they quickly became lost. Ini-
tial confusion may also be due in part to the Expandable Grid interface,
which provides a large amount of information at once. However, after sev-
eral tasks, most users mentioned that they felt quite comfortable with the
visualization.

I also found that users often assumed that a user’s files must be on their
laptops, despite evidence in the interface to the contrary. I started many of
my tasks in what I expected would be a fairly intuitive state: all the files
stored on the desktop and none anywhere else, but users seemed puzzled at
why a user’s data wouldn’t be on their laptop or why TV shows wouldn’t
be on the DVR, and they would sometimes assume this must be the case.
When first using the interface, a number of users tried to drag a user’s laptop
around as proxy for the data they owned, even though the interface stated
there was no data stored there. This suggests that users may have difficulty
initially separating data categories from where they are stored.

As suggested by my contextual analysis, users found hierarchies difficult
to use. Users often failed to expand file groups, even after the training task
walked them through this operation, and instead puzzled for long periods
of time about how to reason about the folders. Even the faceted metadata
case suffered some from this challenge, as the information is presented as a
set of groups into which the user can drill down.

Finally, I found that users seemed quite comfortable with faceted or-
ganization after some experience. I thought that previous experience with
hierarchies would make users likely to misunderstand a faceted organization.

8.1.4 Results

All of the statistically significant comparisons are in favor of the facet in-
terface over the alternative approaches, showing the clear advantage of se-
mantic management for these tasks. For the single replica tasks, the facet
and directory interfaces perform comparably, as expected, with an average
accuracy of 95% and 100%, respectively, compared to an average of 15%



8.1 Usability lab study · 127

for the volume interface. For the data organization tasks, the facet interface
outperforms the directory and volume interfaces with an average accuracy
of 66% compared to 14% and 6%, respectively. Finally, while the accuracy of
sparse tasks is not significantly different, the average time for completion for
the facet interface is 73 seconds, compared to 428 seconds for the directory
interface and 559 seconds for the volume interface. I discuss my statistical
comparisons and the tasks in more detail in this section.

Statistical analysis: I performed a statistical analysis on my accuracy
results in order to test the strength of my findings. Because my data was not
well-fitted to the chi-squared test, I used a one-sided Fisher’s Exact Test for
accuracy and a t-test to compare times. I used Benjamini-Hochberg correc-
tion to adjust my p values to correct for my use of multiple comparisons. As
is conventional in HCI studies, I used α = .05. All comparisons mentioned in
this section were statistically significant, except where explicitly mentioned.

Single replica tasks: Figure 8.4 shows results from the single replica
tasks. As expected, the directory and view interfaces, which both have a
single replica class, perform equivalently, while the volume interface suffers
heavily due to the extra complexity of two distinct replica classes. The com-
parisons between the single replica interfaces and the volume interface are
all statistically significant. I do not show times, because they showed no
appreciable differences.

Data organization tasks: Results from the three aggregation tasks
(U2, RF, and TV) and the two comprehension tasks (TB and TM) are
shown in Figure 8.5. As expected, the faceted metadata approach performs
significantly better than the alternative approaches, as the filesystem struc-
ture more closely matches that of the applications. The facet interface is
statistically better than both other interfaces in the aggregation tasks, but
I would need more data for statistical significance for the comprehension
tasks.

Figure 8.6 shows the accuracy and time metrics for the sparse tasks
(BF and HV). Note that none of the accuracy comparisons are statistically
significant. This is because, in the sparse tasks, each file is in a unique lo-
cation, making the correlation between application structure and filesystem



128 · Putting Home Data Management into Perspective

95
100

90
100 100 100

15

0

30

0

20

40

60

80

100

Average LH C B

Pe
rc

en
t c

or
re

ct

Facet Directory Volume

Figure 8.4. Single replica task results.

structure clear, but very inconvenient. In contrast, for the other aggregation
tasks, the correlation between application structures and the filesystem was
hazy, leading to errors. However, setting the policy on each individual file
was extremely time consuming, leading to a statistically significant differ-
ence in times. The one exception is the HV task, where too few volume users
correctly performed the task to allow comparison with the other interfaces.
Indeed, the hierarchical interfaces took an order of magnitude longer than
the facet interface for these tasks. Thus, re-creating the groups was difficult,
leading to frustration and frequent grumbling that “there must be a better
way to do this.”

8.2 Long-term deployment

While the lab study provided some insight into the benefits of a view-based
system, it does not provide insight into the challenges and advantages such
a system will have in real, long-term usage. To explore the impact of a view-
based system on user behavior, I deployed Perspective into the homes of two



8.2 Long-term deployment · 129

66

80 80 80

30

60

14

30

10
20

10
0

6 10 10 10
0 0

0

20

40

60

80

100

Avg U2 R F TV TB TM

Pe
rc

en
t c

or
re

ct

Facet Directory Volume

Aggrega�on Comprehension

Figure 8.5. Data organization task results. This graph shows the results
from the aggregation and comprehension tasks.

73 74 71

428
553

302

559
724

394

0

500

1000

Avg BF HV

Ti
m

e 
(s

ec
)

Facet Directory Volume

Figure 8.6. Sparse collection task results. This graph shows the results
from sparse collection tasks.



130 · Putting Home Data Management into Perspective

technically savvy associates and studied the results using several interviews.
The deployment has been going on for over four months now. This presents
three sets of interviews done during the first month, allowing me to give
initial findings. However, the study is also ongoing and should provide more
detailed information over a longer period of time.

8.2.1 Initial usage

Perspective was in use, for testing purposes, long before the start of the
long-term deployment. The prototype system has supported my household’s
DVR, which is under heavy use; it is the exclusive television for four room-
mates and myself and is also frequently used by sixteen other friends in the
same complex. It has also stored my personal data for about two years. It
has also been the backing store for the DVR in the lounge for our research
group for several months.

8.2.2 Methodology

Households: While I ideally would have liked to target non-technical users
in this study, as I did for the home server study, the level of maturity of
Perspective prohibits us from doing such a deployment yet. For this reason,
I chose two technical associates for the deployment.

Deployment hardware: I deployed Perspective into each household
and helped each participant migrate their data into the system. I installed
Perspective onto all of their existing devices and replaced any devices that
could not run Perspective with a Perspective-enabled machine. I also in-
stalled a Perspective-based DVR to replace their current DVR implementa-
tion and a backup machine to use for recovery should a problem occur with
Perspective.

Device and data interviews: The deployment started with two one
hour interviews to understand the current data setup of each household. The
first interview focused on the data they stored, the devices they used, and
the way they moved data from device to device.



8.2 Long-term deployment · 131

Weekly interviews: I also performed an interview, at the start of the
deployment, that was identical to the interview held weekly with them after
the deployment. This interview focused on various management activities
that they might have performed. For example, we asked about recovering
from a device failure, backing up data, re-organizing data, etc. For each
task, we asked for examples of when they performed the task, the way they
handle the problem, how they felt about it, and how much time they spend
solving it. I hope to be able to use the comparison between examples given
before and after the study to explore the ways that view-based management
affects these tasks.

A full listing of the questions used in the study can be found in Appendix
C.

8.2.3 Initial findings

While I expect more detailed information to come from the study in the fu-
ture, the initial exploration has led to several interesting observations about
the challenges and advantages of transitioning from files-and-folders based
systems to semantic, distributed systems.

Ralph’s setup: Figure 8.7 shows a picture Ralph drew of his device
setup. Table 8.1 shows a summary of the devices and data Ralph stored in his
home. It is interesting to note that many of the patterns we observed in our
non-technical households are also true for this very technical user. He owns
several old devices that have obsolete data that was never thoroughly copied
forward. One of these is a laptop that is old enough he does not remember
how to access it. He does use an automated backup (Time Machine) to back
up his laptop.

Changes brought with Perspective: Ralph used Perspective to keep
a copy of his files in sync between his laptop and desktop machine, rather
than requiring a manual backup task.

He also used Perspective to sync copies of shows he recorded on the DVR
to his desktop machine. This was a process he did previously by hand. He
noticed that this took much less time, but that it did push him away from



132 · Putting Home Data Management into Perspective

Figure 8.7. Ralph’s device setup. This figure shows a diagram draw by
Ralph as we discussed his data and device setup.



8.2 Long-term deployment · 133

Device Data How it got there

MacBook laptop Photos (130GB) Pulled from cameras
Research papers
Research code
iTunes library (songs, iPod backup)

Old dell laptop No data This machine connected to TV
Old old desktop No active data Thinks most data moved forward
HP laptop HP Email Used previously, no longer remembers password
Time machine backup disk Backup of MacBook Occasional backup
iPod None that is used Not really used
Desktop Videos / tv shows

Music
Financial documents
Old research presentations
Copy of email from work Copied from MacBook

Table 8.1. Ralph summary. This table shows a summary of the storage
devices Ralph uses, the data stored on these devices, and the way in which
this data is added to the given device.

the highly structured, hand-built folder structure he had used previously
towards a more course-grained, group-based style of management. Before he
would spend Saturday mornings categorizing and labeling this data. But,
because the tags were automatically created for him by the DVR, he was
more likely to take them as they were.

Steve’s setup: Figure 8.8 shows a picture Steve drew of his device setup.
Table 8.2 shows a summary of the devices and data Steve stores in his home.

Steve has a large number of devices in his home. He stores much of his
data on a laptop, which he then backs up to a server he stores in the closet.
He also keeps a desktop machine at work, which he uses to share photographs
through a web server. He also has a computer he uses for a DVR to record
shows.

Steve keeps a backup of all his data on the server he keeps in his closet.
He does this using the rsync tool. He also occasionally syncs photo data with
the work desktop, so he can display this information online. He also keeps
one set of data, the raw photographs, only on the machine in his closet,
because it is large and he does not want to pay to keep it backed up twice.

Changes brought with Perspective: Perspective allowed Steve to
replace the rsync paths he was manually managing with an automatically
synced copy of his data. This extended to both the DVR, the desktop and



134 · Putting Home Data Management into Perspective

Figure 8.8. Steve’s device setup. This figure shows a diagram draw by
Steve as we discussed his data and device setup. Note the arrows showing
the way that data moves from device to device in Steve’s setup.



8.3 Performance overheads · 135

Device Data How it got there

Mac desktop Photos
Music
Unsynced music
Unsynced photos

Mac laptop Photos
Music
Word documents
Source / papers

Dell desktop / DVR Videos DVRed
Videos download

Server in closet Raw photos Copied from laptop.
Photos backup Uses rsync.
Music backup Uses rsync.
Videos Uses rsync from DVR.

Home laptop No data Old laptop used for web browsing.

Table 8.2. Steve summary. This table shows a summary of the storage
devices Steve uses, the data stored on these devices, and the way in which
this data is added to the given device.

the laptop machine. Steve also used Perspective to shuttle photos from home
to his work machine, so that he could display these photos over the web.

8.3 Performance overheads

While performance is not the primary evaluation metric of Perspective, it is
important to explore the overheads Perspective introduces. I have found that
Perspective generally incurs tolerable overhead over the base filesystem, and
its performance is sufficient for everyday use. The most telling evaluation is
that Perspective has been used by myself for two years as the backing store
for several multi-tuner DVRs, without performance problems. Another lab
member and two test households have also been running Perspective for one
month to store their actual data.



136 · Putting Home Data Management into Perspective

System Write Read

HFS+ 18.1 s 17.0 s
Perspective 18.6 s 17.2 s

Table 8.3. Simple benchmark. This chart shows the results of a simple
benchmark that writes and reads 800MB worth of 4MB files. The overhead
of Perspective is under 3%. Results shown are an average of 30 runs.

8.3.1 System overhead

I used a simple benchmark to evaluate the overhead of Perspective for home
workloads. This test was run on a MacBook Pro 2.5GHz Intel Core Duo
with 2GB RAM running Macintosh OS X 10.5.4. My benchmark writes 200
4MB files, clears the cache by writing a large amount of data elsewhere, and
then re-reads all 800MB. This sequential workload on small files simulates
common media workloads. For these tasks, I compared Perspective to HFS+,
the standard OS X filesystem. Figure 8.3 shows the results. Perspective
introduces less than a 3% overhead in both phases of this benchmark.

8.3.2 Transfer overhead

Similarly, Figure 8.9 shows the overhead of Perspective in copying data from
one device to another. Perspective only introduces 4% of overhead in the
remote case where we copy data from one device to another. An interesting
point of this experiment is that the inherent overhead of Perspective, the
cost of doing sync, is a very small fraction of the overhead, meaning that
most of the overhead is simply in the prototype’s less efficient data transfer
mechanism.

I used two MacBook Pros, with 1.87 GHz processors and 1 and 2 GB
RAM for this experiment. I connected these devices to a 10Mbps half duplex
wired hub to approximate home wireless bandwidth conditions.

8.3.3 View overhead

In order to route updates to the appropriate devices, Perspective must eval-
uate file metadata against the views currently in the system. Figure 8.10



8.4 Design choices and performance · 137

0

10

20

30

40

50

60

70

80

90

CIFS Perspective

R
u

n
 t

im
e
 (

se
c)

Data transfer Sync

Figure 8.9. Remote performance. This test transfers 10 mp3s (64MB
total) between devices. Perspective introduces a 4% overhead. However, the
inherent protocol overhead is only .14 sec. This graph shows the averages of
5 runs.

shows the cost of evaluating views against foreground updates. In these ex-
periments, I ran tests consisting entirely of reads, writes, and creates through
Perspective, but varied the number of views in the system from 0 to 200.
I constructed the views so that no objects matched the views, but the sys-
tem would have to check the views. Each view contained two OR clauses.
Even 200 views, considerably higher than my expected number of views in a
home deployment, impose negligible overhead on these tests. This is consis-
tent with the results from the Ensemblue experiences [52]. I used a MacBook
Pro with a 1.87 GHz processors and 2 GB RAM for this experiment.

8.4 Design choices and performance

This section outlines various novel design points of Perspective and In-
sight, highlighting how each algorithm or method improves upon existing
approaches for the specific focus of Perspective and the relative strengths
and weaknesses of the approach compared to alternatives.

While some of these comparisons lend themselves to actual benchmarks,
a number of the comparisons are difficult to do quantitatively as they com-
pare methodologies from wildly different systems. Thus, comparing the base



138 · Putting Home Data Management into Perspective

0

20

40

60

80

100

120

0 50 100 150 200
Views

R
u

n
 t

im
e
 (

se
c)

create write read

Figure 8.10. View overhead. We expect 12-100 views in the system. At
even 200 views, the system has no noticeable overhead whem no data items
match any view. Each data point is the average of 10 runs, and the standard
deviation is also shown.

systems would be inappropriate. While I could simulate many of the ap-
proaches using Perspective, it is unclear how valuable this comparison would
be. Instead, for these comparisons, I provide a qualitative comparison of the
costs involved for each operation, given in big O notation, and a description
of the trade-offs involved.

8.4.1 Overlap trees

Overlap trees allow Perspective to efficiently compute how many copies of
a given file set are stored in the system, despite the more flexible storage
policies that views provide. It is important to make this operation efficient
because, while it is only used in administration tasks, these tasks require
calculation of a large number of these overlaps in real time as the user
browses and manipulates data placement policies.

Table 8.4 summarizes the benefits of overlap trees. We compared overlap
trees to a simple method that enumerates all matching files and compares
them against the views in the system. We break out the cost for tree creation
and then the cost to compute an overlap. The “probe” case uses a query and
view set that requires the overlap tree to probe the filesystem to compute
the overlap, while the “no probe” case can be determined solely through



8.4 Design choices and performance · 139

Num files Create OT OT no probe OT w/ probe Simple

100 9.6ms 0.3ms 3.5ms 961ms (.9sec)
1000 29ms 0.6ms 3.8ms 12759ms (12sec)
10000 249ms 0.6ms 3.4ms 95049ms (95sec)

Table 8.4. Overlap tree benchmark. This table shows the results from the
overlap tree benchmark. It compares the time to create a tree and perform
an overlap comparison, with or without probes, and compares to the simple
enumerate approach. Each results is the average of 10 runs.

query comparisons. Overlap trees take a task that would require seconds or
minutes and turns it into a task requiring milliseconds. This test was run on
a MacBook Pro 2.5GHz Intel Core Duo with 2GB RAM running Macintosh
OS X 10.5.4.

8.4.2 View-based data synchronization

In order to provide partial replication with disconnection, a system must
provide a way for devices to exchange the needed updates after they have
been disconnected from one another. Views provide an efficient way to pro-
vide this synchronization. However, this area has had a large amount of
related work, and no one approach is purely better than the others. Table
8.5 shows a number of alternative approaches currently proposed and an
evaluation across several important metrics.

Comparison points: It is difficult to compare synchronization methods,
because each system has its own limitations and advantages, often including
side-cases. I attempt to capture the various axes of comparison here. One
important metric is the cost of synchronization itself. In many systems, this
is divided into two separate cases. If the data on one device can be shown
to be a superset of the other, many systems provide a more optimized ap-
proach. However, it is also possible for two devices without such a superset
to sync, usually at a higher cost. Another important area of comparison
is the requirements the system makes on where data is stored. Most sys-
tems provide some restrictions on replication levels in order to improve sync
performance. Another interesting comparison is the requirements on syn-



140 · Putting Home Data Management into Perspective

Approach Sync cost su-
perset

Sync cost non-
superset

Storage re-
quirements

Sync connect-
edness

Server with hoarding O(number of up-
dates)

Cannot sync Server must store
all data

All devices must
sync with server

Pseudo-server (Server case)
O(number of
updates)

(Pseudo-server
case) O(number
of files on device)
+ O(number of
updates)

Server must store
all data

All devices must
sync with server

Return all data N/A O(number of files
on both devices)

None Per-file connect-
edness, system
does not construct

Update log N/A O(number of up-
dates * number of
replicas)

None Per-file connect-
edness, system
does not construct

Cimbiosis O(number of up-
dates)

O(number of
updates) +
O(number of files
on smaller device)

Some device must
store all data

sync tree, system
constructs

PRACTI N/A O(number of
updates * number
of replicas) +
O(invalidations)

None Per-file connect-
edness, system
does not construct

Views O(number of up-
dates)

O(number of
updates * devices
with matching
views)

None Per-file connect-
edness, freshness
timestamps show
when not held

Table 8.5. Synchronization methods. This table shows alternative ap-
proaches to synchronization for partial replication with disconnection and
costs and limitations of each approach.



8.4 Design choices and performance · 141

chronization patterns in order to assure that data on all devices is kept up
to date. A system must make sure that an update generated on one device
will eventually reach all of the other replicas of this file.

Alternative approaches and comparison: One alternative is the
server with hoarding approach, as proposed by Coda [67]. This system pro-
vides good synchronization performance with the server, only requiring the
updates that are actually relevant to each device to be sent to that device.
However, it does not allow the client devices to sync with any device other
than the server, a limitation not shared by the other approaches listed. It
requires that all data is stored on the server and requires all client devices
to sync with the server.

The pseudo-server case extends upon this case by allowing client devices
to sync with one another. It does so by constructing a pseudo-server, a
device elected as a leader, by copying all of the metadata on the devices
in the ensemble onto the pseudo-server. In this approach, sync when the
server is present is as efficient as the server with hoarding case. However,
sync costs in an ensemble are much higher. The device must upload all of its
metadata to the pseudo-server and then receive all needed updates back from
the pseudo-server. In Ensemblue [52], because the server still determines the
authoritative ordering of updates, all devices must sync with the server
to keep data in sync. All data must still be stored on the central server.
However, a pseudo-server approach could be layered on top of a consistency
method that did not have these restrictions.

The return all data approach is a simple alternative to a server-based
approach. In this approach, on a sync request, a device returns the metadata
for all files that it stores. This approach is simple to implement, but sync
costs are high: each sync cost is order of the number of files on the device.
This approach does not require any limitations on where data is stored.
In order to assure that all replicas of a file are kept in sync, there must
be a sync path from any file replica to all other replicas. I call this per-
file connectedness. This is described in detail in Section 6.2.3. However, a
return-all-data approach does not provide a way to guarantee this kind of
connectedness; the user or some other tool must provide feedback if the



142 · Putting Home Data Management into Perspective

property is not held.
The update log approach improves upon the performance of return-all-

data by keeping a log of recent updates on each device, and tracking the
times at which pairs of devices have synchronized. In this approach, the cost
of a sync operation is the number of updates. However, because each pair of
syncs is independent, each device will see each update once for each other
replica of the file in the system, assuming it syncs eventually with all other
devices. This kind of system puts no requirements on where data must be
stored. However, it still requires some tool to determine when file replicas
may be drifting out of sync.

The Cimbiosis [59] system provides an approach based on sync trees. In
Cimbiosis, some device must store all the data in the system. Each device
then finds a parent device with a superset of the data it stores. This allows
Cimbiosis to limit the versioning information in the best case to a single
version number. For Cimbiosis, the cost of a sync within the sync tree is
only this constant sized version and then the needed updates. Device pairs
where one device is not a descendant of the other can still sync, at a higher
cost. In this case, the devices must exchange the updates and then a list of
the IDs of all files stored on the device. This is order of the number of files on
the device, although it only requires the IDs, rather than the full metadata.
Cimbiosis requires that some device store all files in the system, to serve as
a root for the tree. However, the sync tree assures that all replicas of each
file are kept in sync, so long as devices syncs occasionally with their parent,
an advantage over other approaches.

The PRACTI system provides a similar approach to the update log, but
allows devices to substitute groups of updates that are not relevant to a given
device with a constant sized imprecise invalidation. This keeps the cost of
a synchronization down to the number of updates plus a small number of
invalidations. However, it will not filter updates from other devices, so it
will see each update once for each replica of the file in the system. It does
not distinguish between a superset case, providing the same performance
in all cases. It also does not require data to be stored in any particular
location. Like most approaches, it does not provide a way to guarantee



8.4 Design choices and performance · 143

connectedness. PRACTI also provides more flexible consistency possibilities,
whereas the remaining approaches are all per-file consistency. PRACTI is
also build around a files-and-folders system; while I expect it can be ported
to a semantic system it is not clear how this could be done.

In contrast, views provide many of the advantages of Cimbiosis without
requiring any device to store all the data found in the filesystem. In cases
where the data on one device is a superset of the other, determined using
view logic, views provide the ability to pass only the needed updates. Because
the child device can pull all of the version numbers from the parent device,
it will not see updates from other devices storing file replicas. If the two
devices do not have a superset relationship, views still limit the transfer to
the number of updates needed. However, it loses the ability to filter these
updates from subsequent syncs, so it will see each update once for each file
replica. The workload will determine whether this overhead, or the Cimbiosis
overhead for transferring the IDs of all files on one device, will be more costly.
Views do not require any device to store any particular set of data. Views
require per-file connectivity to ensure all replicas are updated, a different
property than the sync tree property. It is not clear which of these invariants
is more difficult to maintain or more valuable. Freshness timestamps, as
described in Section 6.2.3, provide a way to ensure that all replicas are
connected, and provide suggestions if it is not the case.

8.4.3 View-based distributed search

Views provide a way to efficiently perform distributed search in a device
ensemble. Views provide advantages over existing methods, but also some
trade-offs. I compare views with four other approaches for three metrics.
Table 8.6 shows the alternative methods and a comparison between them.

Comparison points: I compare alternative approaches based on three
metrics. First, I compare the network overhead of ensemble creation. Each
approach requires the exchange of some amount of information in order to
initially establish a searchable ensemble. Second, I compare the network
overhead of a search. It is critical to make search efficient in a distributed



144 · Putting Home Data Management into Perspective

semantic system, as this is the basis of all naming for the system. For sys-
tems with rich metadata, these network costs can be sizeable. For example,
the metadata on my laptop is around 330MB, meaning that a five device
ensemble might have to exchange up to 1.5GB of data simply to establish
an ensemble or do a search.

Third, I compare the number of devices that must respond to each query.
While this is not a particularly important metric when devices are of a
similar size and are not power limited, in a heterogeneous environment like
the home, it is critical that small devices, like cell phones, participating in
the network do not have to handle all searches that much more powerful
devices, like desktop computers, issue. A power and CPU limited device like
a cell phone would have little chance of keeping up with the other devices.

Alternative approaches and comparison: The most efficient imple-
mentation of search is the pre-built server case. This is not possible when
one has an ad-hoc collection of devices, but serves as a best-case compari-
son point for other approaches. In this approach, there is no cost to create
the ensemble, since all the data is already stored on the server. The cost to
search is limited to the number of files in the result, and only one device,
the server, must answer any query.

The second approach is brute force. This is the approach taken by filesys-
tems without semantic support (e.g. grep). For each search, they run through
all of the files in the filesystem looking for results. While an ensemble is easy
to create (no information must be exchanged), the cost for each search is
proportional to the number of files on all devices in the filesystem, making
it infeasible for frequent use. In addition, all devices must respond to all
queries.

The third approach is the Diamond approach [32]. This approach ex-
tends each individual device with search functionality and then forwards all
searches to all devices. The cost for ensemble creation is still negligible. The
cost for a search is reduced substantially; because each device searches in-
ternally, the network cost is only the number of results found on all devices.
However, this approach introduces extra costs that are infeasible in the ex-
tremely heterogeneous home environment. In this approach, a cell phone



8.4 Design choices and performance · 145

participating in the network would have to handle all searches that much
more powerful devices, like desktop computers, issued, even if the searches
could not contain any of the data on the cell phone. A power and CPU
limited device like a cell phone would have little chance of keeping up with
the other devices.

The fourth approach is the pseudo-server approach [52]. In this approach,
the devices in the ensemble elect a powerful device to be a pseudo-server for
the ensemble. All devices send their metadata to this device, which then acts
as a server for the duration of the ensemble. This provides efficient searches,
and only requires a single device to answer a query. However, ensemble
creation is very expensive, making it difficult for ensembles with dynamism.
This approach also requires at least one device in the ensemble to be a
“powerful” device, capable of serving the metadata of all other devices in
the ensemble.

In contrast, views provide efficient search without the cost of building
a central metadata store and without the extra cost of sending queries to
unneeded power-limited devices. If there is a complete view currently acces-
sible that covers the given query (as shown by the Views (complete view)
row), views will act just like the central server case by noticing that the
query only needs to go to that device. It thus obtains the same benefits
without requiring a centralized server and without requiring any device to
have a copy of all metadata in the system.

If an appropriate complete view is not available (as depicted by the
Views row), views allow the system to only query devices that could contain
matching objects. This allows a power-limited device to participate in the
ensemble without having to see most of the queries in the system. Of course,
it is possible that the views in the system do not match the query, and we
must search all devices. In this worst case scenario, views match the Diamond
case, as all queries are forwarded to all devices.

One scenario where views might be less efficient is in the case where
ensembles are very stable and views do not well match the queries in the
system. In this case, views will behave like the Diamond approach, which



146 · Putting Home Data Management into Perspective

Approach Create ensem-
ble network
cost

Search network
cost

Devices queried

Pre-built server None O(number of re-
sults files)

1

Brute force None O(number of
files on all
devices)

All devices

Diamond None O(number of
copies of result
files)

All devices

Pseudo-server O(number of
files on all
devices)

O(number of re-
sults files)

1

Views O(number of
views)

O(number of
copies of results
files)

Devices with
matching views

Views (complete view) O(number of
views)

O(number of re-
sults files)

1

Table 8.6. Search methods. This table shows the costs of various oper-
ations in each of the alternative approaches to search. The limitation that
caused me to use views is highlighted for each approach in bold.



8.4 Design choices and performance · 147

will require a little extra network work for replicated files over the it pseudo-
server approach.

8.4.4 View-based event routing

Views also provide a way to route events to relevant devices. The most com-
mon use of such a mechanism in a filesystem is to forward updates made to
one file replica to all other replicas of that file in the current ensemble. How-
ever, the same methods can also be used to provide application-level event
notification. This section compares view-based event routing with other ap-
proaches. I compare views with three alternative event routing approaches
on three metrics. Table 8.7 outlines the alternatives and their trade-offs.

Comparison points: I compare alternative approaches based on two
metrics. First, I compare the network overhead of ensemble creation. Second,
I compare the number of devices sent a message. This determines both the
network overhead and the number of devices that must spend power on the
operation.

Alternative approaches and comparison: As with search, the pre-
built server case is ideal. In this case, we do not need to transfer any data
on ensemble creation. We only need to route updates to devices that we are
sure hold the file replica since the server has a full index, and we only need
to wake the devices with replicas to which the update belongs. We cannot
use this approach if we do not have a central server, but it is useful as a
best-case scenario.

Another approach is to use a pseudo-server [52]. As in the search case,
on ensemble creation, devices elect a leader and send all metadata to this
device. All devices then route any update through the pseudo-server. This
allows the system to only send updates to devices that actually have a file
replica, although the pseudo-server also must be included, even if it does not
store a replica of the file. However, ensemble creation again requires transfer
of all metadata on all devices to the pseudo-server, an expensive operation.

Another approach is to use a send-to-all approach. In this approach, the
system does no coordination on ensemble creation, and passes all updates to



148 · Putting Home Data Management into Perspective

Approach Create ensemble
network cost

Devices sent mes-
sages

Pre-built server None O(number of file repli-
cas)

Pseudo-server O(number of files in
the system)

O(number of file repli-
cas)+1

Send-to-all None All devices
Views O(number of views) O(number of matching

views)

Table 8.7. Event routing methods. This table shows the costs of vari-
ous operations in each of the alternative approaches to event routing. The
limitation that caused me to use views is highlighted for each approach in
bold.

all devices, allowing them to determine what updates are relevant to them.
While this is simple and requires little overhead in ensemble creation it is
expensive for each update. This is especially problematic in a heterogeneous
system, where some devices may be resource-constrained.

The view-based approach provides very little ensemble set up time (only
the exchange of views) and then routes updates to devices with matching
views. In the normal case, where all views are precise (i.e. all complete
views), this will provide the same performance as the central-server case
without the extra cost of ensemble setup. If the views are imprecise (partial
views), then updates may be sent to devices that have matching views but
do not actually store all of the matching replicas. As partial views are not
currently used heavily in Perspective, this is not a large concern.



9 Conclusion

This dissertation presents the view abstraction to correct the disconnect
between semantic data access and folder-based replica management. A view
is a compact description of a set of files, expressed much like a search query,
and a device on which that data should be stored. For example, one view
might be “all files with type=music and artist=Beatles stored on Liz’s iPod”
and another “all files with owner=Liz stored on Liz’s laptop”. Each device
participating in a view-based filesystem maintains and publishes one or more
views to describe the files that it stores. A view-based filesystem ensures that
any file that matches a view will eventually be stored on the device named
in the view.

In this dissertation, I present the view architecture, the design of a view-
based filesystem, the design of view-based management tools, and a set of
user studies exploring the advantages of such a management system.

9.1 Contributions

This dissertation contains a number of contributions to the literature. First,
I present two exploratory studies into home storage. While the literature
contains a rich history of home studies, my studies each have unique focus.
The deployment study is unique in focusing on the way non-technical users
react to a distributed filesystem. The contextual analysis of home users is
unique in its focus on device upgrade and reliability of home data.

Second, I present the first semantic abstraction for replica management,
the view, and a user study evaluating the usability impact of semantic man-
agement in contrast with more conventional approaches.

149



150 · Putting Home Data Management into Perspective

Third, I present a group of algorithms needed to provide the view ab-
straction in a distributed filesystem. These algorithms include the first con-
sistency protocol that allows for semantically-defined partial replication in
an eventually consistent, heterogeneous, decentralized filesystem environ-
ment. These algorithms also include methods to provide efficient search in
a view-based system.

Fourth, I present Perspective, the first filesystem to provide view-based
replica management. Perspective is fully functional and is in use in several
household in the Pittsburgh area. In addition to showing the feasibility of
a view-based filesystem, the Perspective prototype provides a platform for
continuing research into distributed semantic storage, and distributed home
storage.

Fifth, I present a group of tools which allow users to manipulate file
replicas using the view abstraction. I introduce overlap trees as a mecha-
nism for efficiently reasoning about how many replicas exist of a particular
dataset, and where these files are stored, even when no view exactly matches
the attributes of the dataset. I present the view manager interface as an in-
terface for semantic replica management. I also present customizable faceted
metadata as a way to browse semantic filesystem data.

Sixth, I present results from an initial deployment of the Perspective
filesystem. These results explore some of the initial advantages and chal-
lenges of view-based management in practice.

9.2 Future and ongoing work

There is a lot of ongoing and possible future work in the area of semantic
home storage. In this section, I outline areas that would be interesting to
explore in more depth and areas where other students are building on the
Perspective system.

9.2.1 Security

This is a critical area in the home. My user studies have shown that privacy
and security are important in the home environment and that conventional



9.2 Future and ongoing work · 151

access control methods do not appear to meet this need. A number of stu-
dents and faculty are working on both mechanisms to provide the appro-
priate security abstractions and user study work to understand the security
needs of home users.

9.2.2 Semantic system deployment

The long term deployment is continuing in several households. In addition to
providing a test ground for various home storage research, this deployment
should provide greater insight into how users manage semantic naming over
a long period of time and how they handle less frequent management tasks,
such as device failure and device upgrade.

9.2.3 Visualizing semantic data

Perspective uses a variant of faceted metadata to visualize the data in the
filesystem. However, a large number of approaches are possible, such as
keyword search, hierarchical tag namespaces, etc. Exploration into the effects
of these various techniques on data management, especially over long periods
of time, would be valuable.

9.2.4 Efficient faceted data storage

While the current implementation of Perspective is efficient enough to sup-
port day-to-day usage, faceted metadata support would still be an interesting
area of exploration. As the queries required by users and applications grow
more complex, it is unlikely that the current Perspective search implemen-
tation, built on top of a standard database, will be sufficient. However, I
expect an implementation tuned to this kind of workload could do much
better.

9.2.5 Update connectivity

Perspective uses freshness timestamps to help users understand when repli-
cas are out of date. However, this algorithm is still somewhat crude. Explo-



152 · Putting Home Data Management into Perspective

ration into both the user interfaces and algorithms required to help home
users understand the freshness of their data in a Perspective-style system
would also be valuable to the field. One interesting area could be the ap-
plication of techniques similar to those in Ebling et al. [15] to allow users
to understand what versions of various files have already be transferred to
various devices.

9.2.6 Replica removal and deletion

One challenge for novice and expert users alike is distinguishing between the
removal of a single replica and the removal of all copies of a file. Exploration
into how best to provide and explain this distinction to non-technical users
would be valuable research.

9.2.7 Conflicts

Disconnected systems must deal with data conflicts occasionally, as users
modify two replicas at overlapping time periods. Now that we have a long
term deployment, exploration into how frequent these conflicts are, how they
happen, and how users deal with them would be valuable research.



A Home data contextual analysis questions

A.1 Personal questions

What do each of you do? Are you students, working?
How do you know each other?
How long have you been living together?

A.2 Data and Devices

Please list the digital storage devices in your home. This might include,
computers, music players, TiVo, external hard drives. Feel free to go to your
devices to answer these questions.

Device Owner Usage Capacity (in GB) % full Leaves house?

Please describe the data on each device, including the size of the data.
This could be a division based on data type, usage, etc. Also, tell us how
much you would care if you lost this set of data. Feel free to browse the data
on your devices to answer these questions. Please explain why you feel the
way you do about each data set.

How much would you care if you lost this data?

153



154 · Putting Home Data Management into Perspective

1 Don’t care

2 Annoyance

3 Considerable loss of time or money

4 Big loss, couldnt or wouldnt want to replace

5 Disastrous

Device Data type Size (in GB) Would you care if lost?

How much of your data was created in the last year?
User Percent created last year

Do you back up any of your data? How? (Could be to a disk drive, to
CDs, etc.) How frequently? (daily, weekly, monthly, yearly)

Data type Backup type Frequency

A.3 Scenarios

Describe the last time you backed up your data. (Include software, hardware,
etc.) Can you step through a backup right now?

Have you had digital storage devices fail before? If so, describe what
happened.

Have you ever restored your data from a backup? If not, why? If so,
describe it.



A.3 Scenarios · 155

Have you run short on disk space on a device before? What happened?
What did you do?

Describe the process of setting up your data on the last new device you
purchased.

Have you ever needed data and not been able to access it? Describe the
situation, and what you did to solve it.

Describe the last time you copied or moved data from one device to
another. What was the data, why did you move it, and how did you move
it?

Talk about the last time you shared data between household members.
What data? When? Why?



156 · Putting Home Data Management into Perspective



B Usability lab study tasks

B.1 Welcome

You are testing a new system to control the storage of computer files in the
home. This system allows you to access files stored on any device (laptop,
TiVo, etc) from any device it can talk to. This means that if all their devices
are in their house you can access any data stored on any device. However,
if you were to take a device on a trip, for example, you may not be able to
access the data on devices left at home. The system also provides a global
name for files; so a file’s name is independent of where it is stored, and the
same no matter which device you use. So a file might be owned by Brian
and called ”MyFile”, but stored on any number of devices.

This system also allows you to place copies of the same file on multiple
devices, which the system will assure are kept up to date with updates made
to any of these copies. The system you will be testing allows you to control
where copies of files are stored in this system. This system is still in the
testing phase, so some operations may be slow; please be patient with it.

You will be working with Brian and Mary’s household today. Brian and
Mary are a young couple. Both Brian and Mary have laptops that they take
with them to work. They also have a family desktop machine and a Digital
Video Recorder (TiVo) that they have in their apartment. Today, we will
ask you to perform several tasks for them. They share many of their files
between their devices at home using this new system. They listen to each
others music on their laptops and they watch movies on their TiVo, for
example.

NEWPAGE

157



158 · Putting Home Data Management into Perspective

We would like you to ”think aloud”. As you do each of the tasks, please
read any instructions out loud, and talk out loud about what you are think-
ing, what surprises you, and what you expect. We will record this, which will
help us analyze our system. As you do the task, please remember that we
are evaluating our system, not you. Feel free to ask any questions you may
have before starting. However, to avoid biasing our test, we cannot answer
questions once you have started the tasks.

When you are ready to start, please inform the researcher.

B.2 Training Views task

The ”File copy placement tool” window on the left lets you control where
data is stored in your house.

On the left of the window are files. Each row represents either an indi-
vidual file, or a group of files. Groups of files have a triangle to the left of
their name. Clicking on the triangle shows the things inside of that group.

Task 1: Click on the triangle to the left of ”All Files” to see all the
contents of this file group.

Task 2: Now click on the triangle next to ”All files grouped by owner” to
see the contents of this group. When you are finished, click on the triangle
next to ”All files grouped by owner” again to hide the contents of this group.

Task 3: Next, click on the triangle next to ”All files grouped by type” to
see the contents of this group.

Task 4: Next, click on the triangle next to ”Documents” to see the con-
tents of this group. When you are finished, click on the triangle next to
”Documents” again to hide the contents of this group. Then click on the
triangle next to ”All files grouped by type” again to hide the contents of
this group.

Across the top of the window are devices. Each device in the house is
represented by one column. Each square in the grid represents whether the
files in the row are stored on the device in the column. For example, a white
square shows that none of the files in the row are stored on the device in the
column, while a dark blue square shows that all of the files in the row are



B.2 Training Views task · 159

stored on the device in the column, and a light blue square shows that some,
but not all of the files in the row are stored on the device in the column. To
change the setting, you can click on the square. A list of possible actions will
show up on the screen. Clicking on one of the items in this list will perform
the listed action.

Task 5: Click on the square in the row of ”All files” and the column
of ”Family desktop”. The words ”Store here” will appear. Click on ”Store
here”. Now all the files in the household are stored on the family desktop.

NEWPAGE
Alternately, if you drag a group of files onto anywhere in the column for

a device, it will also store the files in that group on the device in the column.
Task 6: Now, store the files owned by Mary on Mary’s laptop.
The ”Summary of failure protection” column shows whether the files

listed in the row are protected if a single device in the house fails. The dark
orange squares show that this group of files will be safe even if any one
home device crashes. The other colors represent partially or unprotected file
groups.

The ”Summary of files on each device” row shows a summary of what
files are stored on what devices in the home. This allows you to see exactly
what is stored on each device at a glance, without having to look through
all of the file categories.

Task 7: Click on the triangle next to the ”Summary of files on devices”
group to see what files are stored on what devices.

Every time you tell the system to put a group of files onto a device, a
new row is created in this section. By looking at the dark blue squares in the
column for a device, you can tell exactly what you have told the system to
store on that device. For example, all files are stored on the Family desktop.
You can use this column to determine all the files on a given device, or what
files are protected from failure.

Task 8: Use the ”Summary of files on devices” group to answer the
following question:



160 · Putting Home Data Management into Perspective

TEXTBOX BrianTravelSeeAnswer What files are stored on Mary’s lap-
top? Be as precise as possible, but give your answer in terms of file groups
(no need to list individual files).

B.3 Training Directories task

The ”File copy placement tool” window on the left lets you control where
data is stored in your house.

On the left of the window are files. Each row represents either an indi-
vidual file, or a group of files. Groups of files have a triangle to the left of
their name. Clicking on the triangle shows the things inside of that group.

Task 1: Click on the triangle to the left of ”All Files” to see all the
contents of this file group.

Task 2: Now click on the triangle next to ”Brian” to see the contents
of this group. When you are finished, click on the triangle next to ”Brian”
again to hide the contents of this group.

Task 3: Next, click on the triangle next to ”Mary” to see the contents of
this group.

Task 4: Next, click on the triangle next to ”Documents” to see the con-
tents of this group. When you are finished, click on the triangle next to
”Documents” again to hide the contents of this group. Then click on the
triangle next to ”Mary” again to hide the contents of this group.

Across the top of the window are devices. Each device in the house is
represented by one column. Each square in the grid represents whether the
files in the row are stored on the device in the column. For example, a white
square shows that none of the files in the row are stored on the device in the
column, while a dark blue square shows that all of the files in the row are
stored on the device in the column, and a light blue square shows that some,
but not all of the files in the row are stored on the device in the column. To
change the setting, you can click on the square. A list of possible actions will
show up on the screen. Clicking on one of the items in this list will perform
the listed action.



B.3 Training Directories task · 161

Task 5: Click on the square in the row of ”All files” and the column
of ”Family desktop”. The words ”Store here” will appear. Click on ”Store
here”. Now all the files in the household are stored on the family desktop.

NEWPAGE
Alternately, if you drag a group of files onto anywhere in the column for

a device, it will also store the files in that group on the device in the column.
Task 6: Now, store the files owned by Mary on Mary’s laptop.
The ”Summary of failure protection” column shows whether the files

listed in the row are protected if a single device in the house fails. The dark
orange squares show that this group of files will be safe even if any one
home device crashes. The other colors represent partially or unprotected file
groups.

The ”Summary of files on each device” row shows a summary of what
files are stored on what devices in the home. This allows you to see exactly
what is stored on each device at a glance, without having to look through
all of the file categories.

Task 7: Click on the triangle next to the ”Summary of files on devices”
group to see what files are stored on what devices.

Every time you tell the system to put a group of files onto a device, a
new row is created in this section. By looking at the dark blue squares in the
column for a device, you can tell exactly what you have told the system to
store on that device. For example, all files are stored on the Family desktop.
You can use this column to determine all the files on a given device, or what
files are protected from failure.

Task 8: Use the ”Summary of files on devices” group to answer the
following question:

TEXTBOX BrianTravelSeeAnswer What files are stored on Mary’s lap-
top? Be as precise as possible, but give your answer in terms of file groups
(no need to list individual files).



162 · Putting Home Data Management into Perspective

B.4 Training Volumes task

The ”File copy placement tool” window on the left lets you control where
data is stored in your house.

On the left of the window are files. Each row represents either an indi-
vidual file, or a group of files. Groups of files have a triangle to the left of
their name. Clicking on the triangle shows the things inside of that group.

Task 1: Click on the triangle to the left of ”All Files” to see all the
contents of this file group.

Task 2: Now click on the triangle next to ”Brian” to see the contents
of this group. When you are finished, click on the triangle next to ”Brian”
again to hide the contents of this group.

Task 3: Next, click on the triangle next to ”Mary” to see the contents of
this group.

Task 4: Next, click on the triangle next to ”Documents” to see the con-
tents of this group. When you are finished, click on the triangle next to
”Documents” again to hide the contents of this group. Then click on the
triangle next to ”Mary” again to hide the contents of this group.

Across the top of the window are devices. Each device in the house is
represented by one column. Each square in the grid represents whether the
files in the row are stored on the device in the column. For example, a white
square shows that none of the files in the row are stored on the device in the
column, while a dark blue square shows that all of the files in the row are
stored on the device in the column, and a light blue square shows that some,
but not all of the files in the row are stored on the device in the column. To
change the setting, you can click on the square. A list of possible actions will
show up on the screen. Clicking on one of the items in this list will perform
the listed action.

Task 5: Click on the square in the row of ”All files” and the column
of ”Family desktop”. The words ”Store here” will appear. Click on ”Store
here”. Now all the files in the household are stored on the family desktop.

NEWPAGE



B.4 Training Volumes task · 163

Alternately, if you drag a group of files onto anywhere in the column for
a device, it will also store the files in that group on the device in the column.

Task 6: Now, store the files owned by Mary on Mary’s laptop.
The ”Summary of failure protection” column shows whether the files

listed in the row are protected if a single device in the house fails. The dark
orange squares show that this group of files will be safe even if any one
home device crashes. The other colors represent partially or unprotected file
groups.

Each device is either a server, which can only store permanent copies of
top level directories, or a client, which can only store temporary copies of
any group of files. Clicking on the device allows you to switch it between a
server or client device.

The ”Summary of files on client devices” row shows a summary of what
files are stored on what client devices in the home. This allows you to see
exactly what is stored on each device at a glance, without having to look
through all of the file categories.

Task 7: Click on the triangle next to the ”Summary of files on client
devices” group to see what files are stored on what devices.

Every time you tell the system to put a group of files onto a device, a
new row is created in this section. By looking at the dark blue squares in the
column for a device, you can tell exactly what you have told the system to
store on that device. For example, all files are stored on the Family desktop.
You can use this column to determine all the files on a given device, or what
files are protected from failure.

Task 8: Use the ”Summary of files on devices” group to answer the
following question:

TEXTBOX BrianTravelSeeAnswer What files are stored on Mary’s lap-
top? Be as precise as possible, but give your answer in terms of file groups
(no need to list individual files).



164 · Putting Home Data Management into Perspective

B.5 Training

Mary uses iTunes and iPhoto to manage her music, movies, tv shows and
photos. You may also need to use these interfaces while completing these
tasks. You will only need the operations we show you in this introduction,
and you will not need to change anything from these interfaces.

To open iTunes, double click on the icon labelled iTunes on the desktop.
Task 1: Click on the iTunes icon to open the iTunes interface.
Across the left side of the iTunes interface are various groups of music

files, including user playlists. When you click on one of these groups the files
in that group appear in the window on the right.

Task 2: Click on ”Music” in the left pane to see all the music.
To view information on a song, right click on the song name in the right

hand window, then click on ”Get info”. This will show various properties of
the file, including location.

Task 3: View the properties of the song ”Different”.
Now close iTunes by clicking on the red circle in the upper left corner

of the window. To open iPhoto, double click on the icon labelled iPhoto on
the desktop.

Task 4: Click on the iPhoto icon to open the iPhoto interface.
Across the left side of the iPhoto interface are various groups of picture

files, including albums set up by Mary and Brian. When you click on one of
these groups the files in that group appear in the window on the right.

Task 5: Click on ”Library” in the left pane.
To view information for a picture, right click on the picture, then click

on ”Show file”. This will open a window at the location of the file for this
picture. Use the scroll bar at the bottom of the window to move right and
left. Do not move anything in this window, just use it to see where things
are stored.

Task 6: Look at the location of one of the pictures. Then close iPhoto
by clicking on the red circle in the upper left hand corner of the window.



B.6 Mary’s travels · 165

Note that because this is a test, all of the photos will look similar, despite
the groupings. Please ignore the contents of the photos themselves, and
instead use the labels to guide you on these tasks.

NEWPAGE RADIO TrainingDifficulty Please rate, on a scale from 1 to
7, how difficult you found this task. 1 Not at all difficult 2 3 4 Moderately
difficult 5 6 7 Very difficult

RADIO TrainingConfidence Please rate, on a scale from 1 to 7, how con-
fident you are that you correctly completed this task. 1 Not at all confident
2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher

B.6 Mary’s travels

Mary takes her laptop on trips with her. While on these trips she likes to
have access to the files she owns, but she doesn’t need access to Brian’s files
or the Family files. Make sure Mary can access all her files when she takes
her laptop on these trips.

Use the ”File copy placement tool” to the left to change where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

When you are finished with the task, push continue.
NEWPAGE RADIO MaryMobilityDifficulty Please rate, on a scale from

1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4 Moderately
difficult 5 6 7 Very difficult

RADIO MaryMobilityConfidence Please rate, on a scale from 1 to 7,
how confident you are that you correctly completed this task. 1 Not at all
confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher

B.7 Concerned Brian

Brian is concerned that he might lose the data he owns if the family desktop
breaks. However, Mary has asked Brian not to make extra copies of her files



166 · Putting Home Data Management into Perspective

or the Family files. Make sure Brian’s files are safe even if the family desktop
fails.

Use the ”File copy placement tool” to the left to change where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

When you are finished with the task, push continue.
NEWPAGE RADIO BrianReliabilityDifficulty Please rate, on a scale

from 1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4
Moderately difficult 5 6 7 Very difficult

RADIO BrianReliabilityConfidence Please rate, on a scale from 1 to 7,
how confident you are that you correctly completed this task. 1 Not at all
confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher.

B.8 Mary’s laptop comes home

Mary has not taken her laptop on a trip with her for a while now, so she
has decided to leave it in the house and make an extra copy of her files on it
in case the Family desktop fails. However, Brian has asked her not to make
extra copies of his files, or of the Family files. Make sure Mary’s files are
safely stored on her laptop.

Use the ”File copy placement tool” to the left to change where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

When you are finished with the task, push continue.
NEWPAGE RADIO BrianReliabilityDifficulty Please rate, on a scale

from 1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4
Moderately difficult 5 6 7 Very difficult

RADIO BrianReliabilityConfidence Please rate, on a scale from 1 to 7,
how confident you are that you correctly completed this task. 1 Not at all
confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher.



B.9 U2 · 167

B.9 U2

Mary and Brian share music at home. However, when Mary is on trips, she
finds that she can’t listen to all the songs by U2 on her laptop. She doesn’t
listen to any other music, and doesn’t want other songs taking up space on
her laptop, but she does want to be able to listen to U2. Make sure she can
listen to all music by the artist U2 on her trips.

Use the ”File copy placement tool” to the left to change where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

When you are finished with the task, push continue.
NEWPAGE RADIO AndrewBirdDifficulty Please rate, on a scale from 1

to 7, how difficult you found this task. 1 Not at all difficult 2 3 4 Moderately
difficult 5 6 7 Very difficult

RADIO AndrewBirdConfidence Please rate, on a scale from 1 to 7, how
confident you are that you correctly completed this task. 1 Not at all confi-
dent 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher.

B.10 TV

Brian likes to watch recorded and downloaded TV shows using the TiVo.
However, sometimes when Brian sits down to watch the TiVo, he can’t see
some of the TV shows. Make sure Brian can watch any TV show using the
TiVo, even if the other devices in the house may be turned off or outside of
the house.

Use the ”File copy placement tool” to the left to change where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

When you are finished with the task, push continue.
NEWPAGE RADIO BrianMobilityDifficulty Please rate, on a scale from

1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4 Moderately
difficult 5 6 7 Very difficult



168 · Putting Home Data Management into Perspective

RADIO BrianMobilityConfidence Please rate, on a scale from 1 to 7,
how confident you are that you correctly completed this task. 1 Not at all
confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher

B.11 Brian favorites

Brian is taking a trip with his laptop. He doesn’t want to copy all music
onto his laptop because he is short on space, but he wants to have all of the
songs on the playlist ”Brian favorites”.

Use the ”File copy placement tool” to the left to change where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

When you are finished with the task, push continue.
NEWPAGE RADIO BatmanUnderstandDifficulty Please rate, on a scale

from 1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4
Moderately difficult 5 6 7 Very difficult

RADIO BatmanUnderstandConfidence Please rate, on a scale from 1 to
7, how confident you are that you correctly completed this task. 1 Not at
all confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher

B.12 Home videos

Brian has been editing family videos for himself and Mary for the last few
years. He and Mary are visiting his mother next week, and taking Mary’s
laptop with them. Mary doesn’t want to take up space on her laptop for all
of the home video files, just the final versions. Make sure they can show the
final versions of the home videos on their trip.

Use the ”File copy placement tool” to the left to change where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

When you are finished with the task, push continue.



B.13 Rafting · 169

NEWPAGE RADIO BatmanUnderstandDifficulty Please rate, on a scale
from 1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4
Moderately difficult 5 6 7 Very difficult

RADIO BatmanUnderstandConfidence Please rate, on a scale from 1 to
7, how confident you are that you correctly completed this task. 1 Not at
all confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher

B.13 Rafting

Mary and Brian went on a rafting trip and took a group of photos, which
Mary remembers they labeled as Rafting 2007. She wants to show her mother
these photos on Mary’s laptop. However, she doesn’t want to take up space
on her laptop for files other than the Rafting 2007 files. Make sure Mary can
show the photos to her mother during her visit.

Use the ”File copy placement tool” to the left to change where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

When you are finished with the task, push continue.
NEWPAGE RADIO BatmanUnderstandDifficulty Please rate, on a scale

from 1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4
Moderately difficult 5 6 7 Very difficult

RADIO BatmanUnderstandConfidence Please rate, on a scale from 1 to
7, how confident you are that you correctly completed this task. 1 Not at
all confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher

B.14 Travelling Brian

Please wait for the researcher.
This task will not require you to make modifications to the system set-

ting, only to answer the question.



170 · Putting Home Data Management into Perspective

Brian is taking a trip with his laptop. What data will he be able to
access while on his trip? You should summarize your answer into two classes
of data.

Use the ”File copy placement tool” to the left to see where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

Hint: Use the ”Summary of files on devices” row.
TEXTBOX BrianTravelSeeAnswer Please enter the data Brian will be

able to access on his trip. Be as precise as possible, but give the answer in
terms of groups of files (no need to list individual files.) This answer should
be summarized into two classes of files.

When you are finished with the task, push continue.
NEWPAGE RADIO BrianReliabilityDifficulty Please rate, on a scale

from 1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4
Moderately difficult 5 6 7 Very difficult

RADIO BrianReliabilityConfidence Please rate, on a scale from 1 to 7,
how confident you are that you correctly completed this task. 1 Not at all
confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher.

B.15 Travelling Mary

Please wait for the researcher.
This task will not require you to make modifications to the system set-

ting, only to answer the question.
Mary is taking a trip with her laptop. What data will she be able to access

while on her trip? You should summarize your answer into two classes of
data.

Use the ”File copy placement tool” to the left to see where files are
stored in the house, and the iTunes and iPhoto applications to locate data
if needed.

Hint: Use the ”Summary of files on devices” row.
When you are finished with the task, push continue.



B.15 Travelling Mary · 171

TEXTBOX BrianTravelSeeAnswer Please enter the data Mary will be
able to access on her trip. Be as precise as possible, but give the answer in
terms of groups of files (no need to list individual files.) This answer should
be summarized into two classes of files.

NEWPAGE RADIO BrianReliabilityDifficulty Please rate, on a scale
from 1 to 7, how difficult you found this task. 1 Not at all difficult 2 3 4
Moderately difficult 5 6 7 Very difficult

RADIO BrianReliabilityConfidence Please rate, on a scale from 1 to 7,
how confident you are that you correctly completed this task. 1 Not at all
confident 2 3 4 Moderately concerned 5 6 7 Very confident

Please wait for the researcher.



172 · Putting Home Data Management into Perspective



C Deployment questions

C.1 Pre-install interview

Overview: Today we will ask you some general questions about the devices
that you have and what data you store on them. We try to understand
how you organize and manage your data, as well as how you backup and
synchronize your data.

BACKGROUND: For each of the people living in the house: What
are your Name/Age/Profession

DEVICES: Please list the digital storage devices in your home. This
might include:

– USB sticks

– Computers

– Cell phone

– DVR

– Music players

– Gaming systems

– Hard drives

– Cameras

– Memory cards

– Online storage (Flickr, Facebook, Gmail)

173



174 · Putting Home Data Management into Perspective

– Work machines (computers at work that store home data)

For each device, please specify:

– What kind of device is it?

– What storage capacity does it have?

– When did you acquire it?

– What was the purpose of acquiring this device?

– How often do you use it?

– Who else uses it? How often do they use it?

– Where is it used? In which locations? How often in each place?

– What is it used for?

– Upsetness likert to parallel the data and data-device question

DATA GROUPS: Identify data groups that the user has.
Example: pictures, videos, work documents, email.
For each data group:

– How would you describe this data? What is the relationship with other
data groups?

– What is the size of the data group?

DEVICE/DATA pair: For each device/data pair, ask:

– What is the relationship to data from the same data group stored on
another devices? (E.g. identical, a subset of, an older version of, etc)

– Why is the data placed on this device? The purpose could be: as
backup, so I can access it from work, so I have it with me on the cell
phone, as primary storage, etc.



C.1 Pre-install interview · 175

– How did the data get on the devices? Did you copy it manually? Did
you use an automatic synchronization tool like FolderShare? How often
does data get copied/written on this device? (Frequency and method).

– Why the method?

– What operations are done on the data? (read/ read-write/ backup;
high-level operations as well)

– How upset would you be if this data were lost from this particular
device? (Scale from 1 to 5) [Upsetness Likert]

– Think about some times when you need to access this data from this
device. How annoying would it be if it were temporarily unavailable
when you were trying to access it? (5 minutes, one hour, one day, for
the weekend)

REVIEW of WORKFLOW: (From the previous questions, make sure
we have a good understanding of the data flow.) Additional summary ques-
tions to ask as needed. The goal is to be able to go back in the weekly
interviews and see how this changed.

– How long did it take to get your data recovery/management working?
Was it easy or hard to set up?

– What would you like to change in your current work flow? What are
you not satisfied with?

– How much time do you spend per day/week to synchronize/manage
your data?

– What features/system would you like to have to help you manage your
data?

UPSETNESS SCALE:
How upset would you be (were you) in this situation?

1 2 3 4 5
Dont care Upset/Annoyed Devastated



176 · Putting Home Data Management into Perspective

INCONVENIENCE SCALE:
How inconvenient is (was) this process?

1 2 3 4 5
Easy/convenient Annoying but manageable Visiting the DMV

SATISFACTION SCALE:
How satisfied are you (were you) with this system or process?

1 2 3 4 5
Unsatisfied Meets my needs; acceptable Highly satisfied

C.2 Weekly interview

During the study, we will conduct weekly interviews. The goal is to assess
the effectiveness, its ease of use and the users satisfactions with Perspec-
tive. We will discuss events that have happened in the last week, and how
the users usual data management workflow has changed through the use of
Perspective.

Data management operations = any data operations that have to do
with backing up, copying, moving data across devices.

MANAGEMENT TASKS: For the initial interview ask for examples
in the past. Once deployed, use comment box entries or ask the question
if we dont get comment box answers. All of these questions are inside or
outside of Perspective.

– Were you able to access any files from more than one device?

– What data did you access from multiple devices?

– From what devices did you use it?

– Why did you need the data, and why on the devices?

– How did you get access to the data?

– How long did it take you to work out?

– (Initial interview) How often does this happen?

– Did you not have access to a file when you needed it?



C.2 Weekly interview · 177

– What data? Why did you need it? Why didnt you have it?

– How did you solve it? How much did you care? (upsetness likert)

– How long did it take to solve?

– How long did you go without the data?

– How confident are you that in the future (e.g, next week) this
kind of problem will not happen again?

– (Initial interview) How often does this happen?

– Did you have a device fail?

– What device? How did it fail?

– What data was on it?

– How did you recover from the failure? How long did it take?

– Did you lose data? How much did you care about the loss? (up-
setness likert)

– How much did you care about the failure? (upsetness likert)

– (Initial interview) How often does this happen?

– Did you lose data?

– What data? How was it lost?

– How much did you care? (upsetness likert)

– Did it change the way you are managing this data?

– (Initial interview) How often does this happen?

– Did you recover data from a backup?

– Were you successful?

– How long did it take?

– How much did you care? (upsetness likert)

– What if a device failed tomorrow? (Choose device)



178 · Putting Home Data Management into Perspective

– How would you recover from the failure? How long would it take?

– Would you lose data? How much would you care? (upsetness lik-
ert)

– How much would you care about the failure? (upsetness likert)

– Did you add a device to your home setup?

– What device?

– Why did you add it? What did you use it for?

– What data did you move onto it and why?

– What data did you create on it?

– (Initial interview) How often does this happen?

– Did you remove a device from your home setup?

– What device?

– Why did you remove it?

– What data did you move off of it and why?

– What data never made it off the device?

– (Initial interview) How often does this happen?

– Did you change the tags on your data? This includes directories, ID3
tags, Perspective metadata, etc.

– What data did you change it on?

– How did you change the tags?

– Why did you change the tags?

– How long did it take you?

– (Initial interview) How often does this happen?

– Did you change the way your data was backed-up or protected from
failure?

– In what way did you change the configuration?



C.2 Weekly interview · 179

– Why did you change the configuration?

– How long did it take you?

– Did you try to do a management task on your data and give up?

– What was it?

– What was difficult about it?

– What did you do instead?

– Did you spend time on other data management tasks?

– What was it?

– How long did it take?

Choose instances of their workflow (taking photos, music, etc.) and ask
whether they have done this task this week and how they did it.

FEEDBACK/CONFIDENCE:

– How confident are you that your data is adequately protected from
failure? (confidence likert)

– How confident are you that your data will be accessible when you need
it? (confidence likert)

– Do you check to make sure your files are correctly placed and up to
date? How?

PERSPECTIVE - EVALUATION:

– How satisfied are you with Perspective? (sat likert)

– Overall, how intuitive was it to create new views/setup Perspective to
do what you wanted?

– What functionality do you think Perspective is lacking? Which features
do would you like to see added? (? E.g. devices must come in physical
proximity to get synchronized)



180 · Putting Home Data Management into Perspective

DATA ORGANIZATION:

– What are you unhappy with about your data organization?

– What are you happy with about your data organization?

– How happy are you with your organization. (sat likert)

GENERAL QUESTIONS (some not applicable for initial in-

terview):

– first week: How much time did you spend on data management this
week? How much time in Perspective vs. outside Perspective?

– Which of your data groups are being managed by Perspective?

– Which data groups are not? Which data do you still manage manually
or through previous/other methods? Why? (e.g. Perspective does not
support the device, I use online storage, etc)

– first week: Overall management process satisfaction? (sat likert)

– How satisfied are you with managing your data through Perspective?
(sat likert)



Bibliography

[1] Flickr Web Page. http://www.flickr.com. 16

[2] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,
and Tushar D. Chandra. Matching events in a content-based subscrip-
tion system. PODC. (Atlanta, GA, 04–06 May. 1999), pages 53–61.
ACM, 1999. 15

[3] R. Aipperspach, T. Rattenbury, A. Woodruff, and J. Canny. A Quanti-
tative Method for Revealing and Comparing Places in the Home. UBI-
COMP (Orange County, CA, Sep. 2006), 2006. 9, 26

[4] Aperture Web Page. http://www.apple.com/aperture/. 16

[5] Avahi Web Page. http://avahi.org. 75

[6] Beagle web page, http://beagle-project.org, 2007. 1, 20

[7] Genevieve Bell and Joseph Kaye. Designing technology for domestic
spaces: A Kitchen Manifesto. Gastranomica, 2(2):46–62, 2002. 10

[8] Hugh Beyer and Karen Holtzblatt. Contextual Design: Defining
Customer-centered Systems. Morgan Kaufmann Publishers, 1998. 8

[9] Sumeer Bhola, Yuanyuan Zhao, and Joshua Auerbach. Scalably sup-
porting durable subscriptions in a publish/subscribe system. DSN. (San
Francisco, CA, 22–25 Jun. 2003), pages 57–66. IEEE, 2003. 15

[10] Bonjour Web Page. http://www.apple.com/macosx/technology/-
bonjour.html. 75

181



182 · Putting Home Data Management into Perspective

[11] Barry Brown and Louise Barkhuus. The Television Will Be Revolu-
tionized: Effects of PVRs and Filesharing on Television Watching. CHI
(Montreal, Canada, 2006), 2006. 10

[12] A. J. Bernheim Brush and Kori M. Inkpen. Yours, Mine and Ours?
Sharing and Use of Technology in Domestic Environments. UBICOMP
07, 2007. 9, 35, 39, 48

[13] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Achieving Expressiveness and Scalability in an Internet-Scale Event
Notification Service. Nineteenth ACM Symposium on Principles of
Distributed Computing (PODC2000) (Portland, OR, Jul. 2000), pages
219–227, 2000. 15

[14] Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramana, Praveen
Yalagandula, and Jiandan Zheng. PRACTI Replication. NSDI. (May.
2006), 2006. 12, 80

[15] Maria R Ebling, Bonnie E John, and Mahadev Satyanarayanan. The
importance of translucence in mobile computing systems. CHI 2002,
2002. 8, 152

[16] W Keith Edwards and Rebecca E Grinter. At home with ubiquitous
computing: seven challenges. Ubiquitous Computing International Con-
ference (UBICOMP) (Atlanta, GA, 2001), 2001. 9

[17] Facebook Web Page. http://www.facebook.com. 16

[18] David Frohlich and Robert Kraut. The Social Context of Home Com-
puting. In . Springer, 2003. 9

[19] David M. Frohlich, Susan Dray, and Amy Silverman. Breaking up is
hard to do: family perspectives on the future of the home PC. Interna-
tional Journal of Human-Computer Studies, 54(5):701–724, May. 2001.
8, 9

[20] Filesystem in User Space Web Page. http://fuse.sourceforge.net/. 4,
88



Bibliography · 183

[21] Roxana Geambasu, Magdalena Balazinska, Steven D. Gribble, and
Henry M. Levy. HomeViews: Peer-to-Peer Middleware for Personal
Data Sharing Applications. SIGMOD., 2007. 14

[22] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James
W. O’Toole Jr. Semantic file systems. SOSP. (Asilomar, Pacific Grove,
CA). Published as Operating Systems Review, 25(5):16–25, 13–16 Oct.
1991. 1, 20, 93

[23] Google desktop web page, http://desktop.google.com, Aug. 2007. 1, 20

[24] Google Documents Web Page. http://docs.google.com. 16

[25] Burra Gopal and Udi Manber. Integrating Content-based Access Mech-
anisms with Heirarchical File Systems. OSDI. (New Orleans, LA, Feb.
1999), 1999. 20

[26] Rebecca E Grinter, W Keith Edwards, Mark W Newman, and Nico-
las Ducheneaut. The work to make a home network work. European
Conference on Computer Supported Cooperative Work (ESCW) (Paris,
France, 18–22 Sep. 2005), 2005. 9, 33, 35

[27] Richard G. Guy. Ficus: A Very Large Scale Reliable Distributed File
System. PhD thesis, published as Ph.D. Thesis CSD-910018. University
of California, Los Angeles, 1991. 13, 80, 81

[28] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page Jr,
Gerald J. Popek, and Dieter Rothmeier. Implementation of the Ficus
replicated file system. USENIXSummer. (Anaheim, California), pages
63–71, 11–15 Jun. 1990. 98

[29] A Consumer’s Eye View of Whole Home Storage, 2009.
http://www.intelconsumerelectronics.com/Consumer-Electronics-
3.0/Whole-Home-Storage.aspx. 10

[30] Kenton O Hara, April Slayden Mitchell, and Alex Vorbau. Consuming
Video on Mobile Devices. CRYPTO (San Jose, CA, 2007), 2007. 9



184 · Putting Home Data Management into Perspective

[31] Debby Hindus. The importance of homes in technology research. Co-
operative Buildings (CoBuild) (Pittsburgh, PA, 1999), 1999. 8

[32] Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, M. Satya-
narayanan, Gregory R. Ganger, Erik Riedel, and Anastassia Aila-
maki. Diamond: A storage architecture for early discard in interactive
search. FAST. (San Francisco, CA, 31 Mar.–02 Apr. 2004), pages 73–86.
USENIX Association, 2004. 14, 144

[33] iPhoto Web Page. http://www.apple.com/ilife/iphoto. 16

[34] iTunes/iPod Web Page. http://www.apple.com/itunes/. 16

[35] Bonnie E. John, Len Bass, Maria-Isabel Sanchez-Segura, and Rob J.
Adams. Bringing Usability Concerns to the Design of Software Ar-
chitecture. Engineering for Human-Computer Interaction (Hamburg,
Germany, 11–13 Jul. 2004), 2004. 8

[36] Alexandros Karypidis and Spyros Lalis. OmniStore: A system for ubiq-
uitous personal storage management. IEEE International Conference
on Pervasive Computing and Communications. IEEE, 2006. 12

[37] Robert J Logan, Sheila Augaitis, Robert B Miller, and Keith Wehmeyer.
Living Room Culture – An Anthropological Study of Television Usage
Behaviors. Human Factors and Ergonomics Society 39th Annual Meet-
ing, pages 326–330, 1995. 10

[38] Dahlia Malkhi and Doug Terry. Concise Version Vectors in WinFS.
DISC. (Cracow, Poland, Sep. 2005), 2005. 1, 20

[39] Catherine C Marshall. How People Manage Personal Information over
a Lifetime. In . University of Washington Press, 2007. 9

[40] Catherine C Marshall. No Bull, No Spin: A comparison of tags with
other forms of user metadata. JDCL 2009 (Austin, TX, 15–19 Jun.
2009), 2009. 9



Bibliography · 185

[41] Catherine C Marshall. Rethinking Personal Digital Archiving, Part 1:
Four Challenges from the Field. DLib Magazine, 14(3/4), Mar. 2008.
9, 52

[42] Catherine C Marshall. Rethinking Personal Digital Archiving, Part 2:
Implications for Services, Applications, and Institutions. DLib Maga-
zine, 14(3/4), Mar. 2008. 9

[43] Catherine C. Marshall, Sara Bly, and Francoise Brun-Cottan. The Long
Term Fate of Our Personal Digital Belongings: Toward a Service Model
for Personal Archive. Archiving 2006 (Springfield, VA, 2006), 2006. 9,
44, 50, 61, 64

[44] Michael Mateas, Tony Salvador, Jean Scholtz, and Doug Sorenzen. En-
gineering Ethnography in the Home. CHI (Vancouver, Canada, 1996),
1996. 8

[45] Windows Media Player Web Page.
http://www.microsoft.com/windows/windowsmedia/player/10/default.aspx.
16

[46] C. Nass, B. Reeves, and G. Leshner. Technology and roles: a tale of
two TVs. Journal of Communication, 46(2):121–128, 1996. 34

[47] Edmund B. Nightingale and Jason Flinn. Energy-efficiency and storage
flexibility in the Blue file system. OSDI. (San Francisco, CA, 06–08
Dec. 2004), pages 363–378. USENIX Association, 2004. 12

[48] Jon O’Brien, Tom Rodden, Mark Rouncefield, and John Hughes. At
home with the technology: an ethnographic study of a set-top-box trial.
CHI, 1999. 10, 48

[49] Antti Oulasvirta and Lauri Sumari. Mobile kits and laptop trays: man-
aging multiple devices in mobile information work. CHI (San Jose, CA,
2007), 2007. 9



186 · Putting Home Data Management into Perspective

[50] Justin Mazzola Paluska, David Saff, Tom Yeh, and Kathryn Chen. Foot-
loose: A Case for Physical Eventual Consistency and Selective Conflict
Resolution. IEEE Workshop on Mobile Computing Systems and Appli-
cations (Monterey, CA, 09–10 Oct. 2003), 2003. 12, 84

[51] D. Stott Parker, Gerald J. Popek, Gerald Rudisin, Allen Stoughton,
Bruce J. Walker, Evelyn Walton, Johanna M. Chow, David Edwards,
Stephen Kiser, and Charles Kline. Detection of mutual inconsistency in
distributed systems. IEEE Trans. on Software Engineering, 9(3):240–
247, May. 1983. 81

[52] Daniel Peek and Jason Flinn. EnsemBlue: Integrating distributed stor-
age and consumer electronics. OSDI (Seattle, WA, 06–08 Nov. 2006),
2006. 9, 13, 14, 66, 79, 137, 141, 145, 147

[53] Picasa Web Page. http://picasa.google.com. 16

[54] Benjamin C. Pierce and Jerome Vouillon. What’s in Unison? A For-
mal Specification and Reference Implementation of a File Synchronizer.
Technical report MS-CIS-03-36. Dept. of Computer and Information
Science, University of Pennsylvania, 2004. 13

[55] Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-
Based Middleware Architecture. International Workshop on Distributed
Event-Based Systems (Vienna, Austria), 2002. 15

[56] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan 9
from Bell Labs. United Kingdom UNIX systems User Group (London,
UK, 9–13 Jul. 1990), pages 1–9. United Kingdom UNIX systems User
Group, Buntingford, Herts, 1990. 74

[57] Ansley Post, Petr Kuznetsov, and Peter Druschel. PodBase: Transpar-
ent storage management for personal devices. International Workshop
on Peer-to-peer Systems 2008 (Tampa, FL, 2008), 2008. 14

[58] Nuno Preguica, Carlos Baquero, J. Legatheaux Martins, Marc Shapiro,
Paulo Sergio Almeida, Henrique Domingos, Victor Fonte, and Sergio



Bibliography · 187

Duarte. FEW: File Management for Portable Devices. Proceedings of
The International Workshop on Software Support for Portable Storage,
2005. 13

[59] Venugopalan Ramasubramanian, Thomas L. Rodeheffer, Douglas B.
Terry, Meg Walraed-Sullivan, Ted Wobbler, Catherine C. Marshall, and
Amin Vahdat. Cimbiosys: A Platform for content-based partial repli-
cation. NSDI. (Boston, MA, Apr. 2009), 2009. 13, 80, 84, 142

[60] Dave Randall. Living Inside a Smart Home: A Case Study. In . Springer
London, 2003. 10

[61] David Ratner, Peter Reiher, and Gerald J. Popek. Dynamic Version
Vector Maintenance. Tech report CSD-970022. Department of Com-
puter Science, University of California, Los Angeles, 1997. 81, 87

[62] Robert W. Reeder, Lujo Bauer, Lorrie Faith Cranor, Michael K. Reiter,
Kelli Bacon, Keisha How, and Heather Strong. Expandable grids for
visualizing and authoring computer security policies. CHI (Florence,
Italy, 2007), 2007. 16, 113, 117

[63] Eric Riedel, Christos Faloutsos, Garth Gibson, and Dave Nagle. Active
disks for large-scale data processing. IEEE Computer, pages 68–74,
Jun. 2001. 14

[64] Yasushi Saito and Christos Karamanolis. Name space consistency in the
Pangaea wide-area file system. HP Laboratories SSP Technical Report
HPL–SSP–2002–12. HP Labs, Dec. 2002. 13

[65] Brandon Salmon, Frank Hady, and Jay Melican. Learning to Share:
A Study of Sharing Among Home Storage Devices. Technical Report
CMU-PDL-07-107. Carnegie Mellon University, Oct. 2007. 23

[66] Brandon Salmon, Steven W. Schlosser, Lily B. Mummert, and Gre-
gory R. Ganger. Putting home storage management into perspective.
Technical Report CMU-PDL-06-110. Sep. 2006. 9



188 · Putting Home Data Management into Perspective

[67] M. Satyanarayanan. The evolution of Coda. ACM Transactions on
Computer Systems, 20(2):85–124. ACM Press, May. 2002. 12, 14, 66,
80, 81, 92, 141

[68] Bill Schilit and Uttam Sengupta. Device Ensembles. IEEE Computer,
37(12):56–64. IEEE, Dec. 2004. 13, 71, 75

[69] Bob Sidebotham. VOLUMES – the Andrew file system data structuring
primitive. EUUGAutumn. (Manchester, England, 22−24 Sep. 1986),
pages 473–480. EUUG Secretariat, Owles Hall, Buntingford, Herts SG9
9PL, Sep. 1986. 12, 14, 81

[70] Alex Siegel, Kenneth Birman, and Keith Marzullo. Deceit: a flexible
distributed file system. USENIXSummer. (Anaheim, California), pages
51–61, 11–15 Jun. 1990. 12

[71] Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Junwen Lai, Yilei Shao, Chi
Zhang, Elisha Ziskind, Arvind Krishnamurthy, and Randolph Y. Wang.
Segank: a distributed mobile storage system. FAST. (San Francisco,
CA, 31 Mar.–02 Apr. 2004), pages 239–252. USENIX Association, 2004.
12

[72] Craig A. N. Soules and Gregory R. Ganger. Connections: Using Context
to Enhance File Search. SOSP. (Brighton, United Kingdom, 23–26 Oct.
2005), pages 119–132. ACM, 2005. 1

[73] Spotlight web page, http://www.apple.com/macosx/features/spotlight,
Aug. 2007. 1, 20

[74] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting Disconnected-
ness - Transparent Information Delivery for Mobile and Invisible Com-
puting. International Symposium on Cluster Computing and the Grid
(CCGrid), 2001. 15

[75] Alex S. Taylor, Richard Harper, Laurel Swan, Shahram Izadi, Abigail
Sellen, and Mark Perry. Homes that make us smart. Personal and
Ubiquitous Computing. Springer London, 2006. 10



Bibliography · 189

[76] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,
Mike J. Spreitzer, and Carl H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. SOSP. (Copper
Mountain Resort, CO, 3–6 Dec. 1995). Published as Operating Systems
Review, 29(5), 1995. 13, 80, 81, 82, 92

[77] The UPnP Forum. http://www.upnp.org/. 75

[78] Amy Voida, Rebecca E Grinter, Nicolas Ducheneaut, W Keith Edwards,
and Mark W Newman. Listening in: practices surrounding iTunes music
sharing. CHI (Porland, OR, 2005), 2005. 9

[79] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg
Theil. The LOCUS distributed operating system. SOSP. (Bretton
Woods, New Hampshire). Published as Operating Systems Review,
17(5):49–70, Oct. 1983. 12

[80] Markus Weiland and Raimund Dachselt. Facet Folders: Flexible Filter
Hierarchies with Faceted Metadata. CHI 2008 (Florence, Italy, 05–10
Apr. 2008), 2008. 20

[81] Windows 7 News: Windows 7 Libraries.
http://windows7news.com/2009/04/07/windows-7-libraries/. 20

[82] WinFS 101: Introducing the New Windows File System, March 2007.
http://msdn.microsoft.com/en-us/library/aa480687.aspx. 1, 20

[83] A. Woodruff, S. Augustin, and B. E. Foucault. Sabbath Day Home
Automation: It’s Like Mixing Technology and Religion. CHI (San Jose,
CA, 2007), 2007. 10

[84] Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted
Metadata for Image Search and Browsing. CHI, 2003. 20, 74, 102



190 · Putting Home Data Management into Perspective


